期刊文献+

水冷陶瓷增殖剂包层氚输运分析 被引量:1

Tritium transport analysis for water cooled ceramic breeder blanket
下载PDF
导出
摘要 基于2015版本中国聚变工程实验堆(CFETR)水冷陶瓷增殖剂(WCCB)包层模块设计特点,建立详细的氚输运分析模型,对不同包层模块(包括不同的增殖区)、载氚气回路、冷却剂回路和蒸汽发生器中的氚输运进行分析。结果表明不同包层模块氚的浓度、渗透量、滞留量均不同,全堆所有包层模块增殖区中氚的滞留量为6.62×10-2g,结构材料中氚滞留量为2.01g,载氚气和冷却剂回路中氚滞留量分别为4.03×10-4g和0.19g,氚通过蒸汽发生器的渗透量为20mg·y-1,冷却剂回路中氚渗透到管道外的量为0.1mg·y-1。 Based on the design of the 2015 version of China Fusion Engineering Test Reactor(CFETR)water cooled ceramic breeder(WCCB)blanket modules surrounding the plasma,a tritium transport model has been developed.Tritium transport analysis has been carried out for each blanket module with different breeding zones,purge gas loop,coolant loop and steam generator.The results indicate that the concentration,permeability and retention of tritium among blanket modules are different.For all of the WCCB blanket modules in CFETR,the tritium retention inside the breeder is 6.62×10-2g,the tritium retention inside the structural materials is 2.01 g,the tritium retention inside purge gas and coolant loop are 4.03×10-4g and 0.19 g respectively,the tritium permeation through the steam generator tube walls is 20 mg·y-1,the tritium permeation from the coolant pipes is 0.1 mg·y-1.
作者 张兵 赵雪丽 马学斌 刘松林 ZHANG Bing;ZHAO Xue-li;MA Xue-bin;LIU Song-lin(Institute of Plasma Physics,Chinese Academy of Sciences,Hefei 230031;University of Science and Technology of China,Hefei 230026;Advanced Energy Research Center,Shenzhen University,Shenzhen 518060;College of Optoelectronic Engineering,Shenzhen University,Shenzhen 518060)
出处 《核聚变与等离子体物理》 CAS CSCD 北大核心 2019年第4期301-308,共8页 Nuclear Fusion and Plasma Physics
基金 国家重点研发计划(2017YFE0300502)
关键词 中国聚变工程实验堆 水冷陶瓷增殖剂包层 氚分析 CFETR Water cooled ceramic breeder blanket Tritium analysis
  • 相关文献

参考文献2

二级参考文献9

  • 1Deng B Q, Li Z X, Feng K M. Tritium well depth, tritium well time and sponge mechanism for reducing tritium retention [J]. Nucl. Fusion, 2011, 51(7): 073041.
  • 2Loarer T, Brosset C, Bucalossi J, et al. Gas balance and fuel retention in fusion devices [J]. Nucl. Fusion, 2007, 47(9): 1112-1120.
  • 3Brezisek S, Loarer T, Krieger K, et al. Fuel retention in impurity seeded discharges in JET after Be evaporation [J]. Nucl. Fusion, 2011, 51(7): 073007.
  • 4I)eng B Q, Li X Z, Huang J H, et al. Computer simulation of tritium inventory and leakage of the fusion experimental reactor of FEB-E [J]. Fusion Science and Technology, 2004, 46(4): 548.
  • 5Deng B Q, Huang Q R, Peng L L, et al. Measurement of hydrogen solubility, diffusivity and permeability in HR-1 stainless steel [J]. J. Nucl. Mater., 1992, 191-194: 653.
  • 6Deng Bai-quan, Allain J P, Lou Zheng-ming. Nearsurface bipartition model for the study of material response of plasma-facing surfaces exposed to energetic charged particles [J]. NIMB, in Res. B, 2007, 259: 847-852.
  • 7Kuan W, Abdou M A, Willims R S. Mean residence method of calculation tritium inventory [J]. Fusion Eng. Des., 1995, 28: 329.
  • 8Anderson J L. The status of tritium technology develop- ment for magnetic fusion energy [J]. Nuclear Technology Fusion, 1983, 4(2): 75.
  • 9Sze D K, Mattas R F, Anderson J L. Tritium recovery from lithium based on cold trap [J]. Fusion Engineering and Design, 1995, 28: 220.

共引文献4

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部