期刊文献+

ZnIn2S4@CNO多级纳米片用于光催化分解水制氢和还原CO2(英文) 被引量:2

Fabrication of hierarchical ZnIn2S4@CNO nanosheets for photocatalytic hydrogen production and CO2 photoreduction
下载PDF
导出
摘要 光催化分解水制氢和还原CO2是太阳能利用领域的研究热点,对清洁能源的转化具有重要意义.石墨相氮化碳(CN)作为一种非金属半导体,是一种非常有开发潜力的光催化材料.然而限于其聚合物本质,光催化效率仍有待进一步提高.原位非金属掺杂可以利用元素电子结构调控电荷分布,优化光生电荷传输性能.同时,半导体复合,尤其是2D层状复合结构的构筑,可充分发挥2D半导体的优势,合适的能带交错有利于光生电荷的传输,可在一定程度上加速催化反应的进行.本文首先以草酸为氧掺杂源,采用二步煅烧法合成氧掺杂氮化碳纳米片催化剂(CNO).在二次煅烧和氧掺杂共同作用下,增大了CN层间距和多孔性,颗粒尺寸减小,同时增强了对光的吸光性,拓展了可见光吸收范围.接下来采用一步水热合成法得到ZnIn2S4@CNO(ZC)复合材料,在可见光照射下通过分解水制氢和CO2还原反应对复合材料进行光催化还原性能评价.采用X射线衍射(XRD)、透射电镜(TEM)、X射线光电子能谱(XPS)、荧光光谱(PL)、光电化学测试等方法对ZC进行详细的结构表征和分析.XRD和XPS结果表明,经过一步直接水热可得到层状ZC复合材料,高倍TEM进一步证实二者形成均一的2D异质复合材料.N2-吸附-脱附曲线表明,复合材料具有较大的比表面积和均一的孔结构分布,主要得益于O掺杂CNO纳米片的多孔性结构.光电性质测试结果表明,相比于CNO,复合材料具有降低的荧光发射强度和延长的荧光寿命,表明复合产物显著抑制了光生电荷的复合.电化学测试进一步表明,复合异质结的构筑有利于光生载流子的产生,同时降低了界面电荷转移电阻,提高了电荷迁移速率.因此,多孔2D异质结构的构筑对促进CN基半导体光催化还原具有重要作用.在可见光照射下(λ>400 nm),复合材料表现出优异的光催化还原性能,且随着CNO含量的增加催化活性不断提高,其中ZC 40%(CNO质量比40%)具有最佳的催化活性,其产氢速率达188.4μmol/h,约是ZnIn2S4和CNO的2.1倍.同时,光催化还原CO2测试表明,复合材料具有显著提高的CO和CH4产率,其中CO为主要反应产物.ZC40%的CO产生速率为12.69μmol/h,分别是ZnIn2S4和CNO的2.2倍和14.0倍.对催化剂进行连续光反应,结果表明,复合催化剂具有优异的结构稳定性和活性稳定性,能够持续发生光还原反应制取H2和CO. Photocatalytic H2 production and CO2 reduction have attracted considerable attention for clean energy development.In this work,we designed an efficient photocatalyst by integrating lamellar oxygen-doped carbon nitride(CNO)nanosheets into ZnIn2S4(ZIS)microflowers by a one-step hydrothermal method.A well-fitted 2D hierarchical hybrid heterostructure was fabricated.Under visible light irradiation,the ZIS@CNO composite with 40 wt%CNO(ZC 40%)showed the highest hydrogen evolution rate from water(188.4μmol·h-1),which was approximately 2.1 times higher than those of CNO and ZIS(88.6 and 90.2μmol·h-1,respectively).Furthermore,the selective CO production rates of ZC 40%(12.69μmol·h-1)were 2.2 and 14.0 times higher than those of ZIS(5.85μmol·h-1)and CNO(0.91μmol·h-1),respectively,and the CH4 production rate of ZC 40%was 1.18μmol·h-1.This enhanced photocatalytic activity of CNO@ZIS is due mainly to the formation of a heterostructure that can promote the transfer of photoinduced electrons and holes between CNO and ZIS,thereby efficiently avoiding recombination of electron-hole pairs.
作者 祝凯 欧阳杰 曾黔 孟苏刚 滕伟 宋艳华 唐盛 崔言娟 Kai Zhu;Jie Ou-Yang;Qian Zeng;Sugang Meng;Wei Teng;Yanhua Song;Sheng Tang;Yanjuan Cui(School of Environmental and Chemical Engineering,Jiangsu University of Science and Technology,Zhenjiang 212003,Jiangsu,China;College of Chemistry and Materials Science,Huaibei Normal University,Huaibei 235000,Anhui,China)
出处 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第3期454-463,共10页 催化学报(英文)
基金 supported by the National Natural Science Foundation of China(21503096,21407067) the Natural Science Foundation of Educational Committee of Anhui Province(KJ2018A0387),China Project of Anhui Province for Excellent Young Talents in Universities(gxyq2019029),China
关键词 ZnIn2S4 氧掺杂氮化碳 光催化 产氢 CO2还原 ZnIn2S4 Oxygen doped carbon nitride Photocatalysis H2 production CO2 reduction
  • 相关文献

同被引文献5

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部