期刊文献+

频率与温度对不同橡胶基磁流变弹性体的影响 被引量:4

Effect of frequency and temperature on different rubber-based MR elastomers
下载PDF
导出
摘要 磁流变弹性体(MREs)作为一种新型智能磁敏材料的一个分支,能够感应外加磁场,并做出力学响应,在汽车减震,飞机、高铁、武器等军事和民用领域有广泛的应用前景,然而MREs不良的机械性能和较低的磁流变效应制约了其工程方面的应用。从该问题出发,使用羰基铁粉(CIP)填充氯丁橡胶和顺丁橡胶,制备了氯丁橡胶基和顺丁橡胶基MREs,讨论了橡胶基体种类和使用工况(振动频率、温度等)对MREs性能的影响,以便更好进行智能控制。结果发现,氯丁橡胶基MREs比顺丁橡胶基MREs有着更好的磁流变效应。频率的增大使得氯丁橡胶基MREs硫化胶磁致模量和相对磁流变效应增大,而顺丁橡胶基MREs则相反;温度的升高降低了氯丁橡胶基MREs硫化胶的零场模量和磁致模量,但是提高了其相对磁流变效应。 As a new type of a branch of intelligent magnetic susceptibility materials, magnetorheological elastomers (MREs), which can make a mechanical response after sensing a change in the magnetic field, have broad application prospects in automobile suspension, the plane, high iron, weapons and other military and civilian fields. However, its poor mechanical properties and low magnetic rheological effect restrict its engineering application. Started from this problem, magnetorheological elastomers (MREs) were prepared by filling CR and BR with carbonyl iron powder in this paper. The effects of matrix, frequency and temperature on magnetorheological effect and loss factor of MREs were analyzed. The results show that MREs based CR had better magnetorheological effect than MREs based BR. With the increase of frequency, the magnetodynamic modulus and relative magnetorheological effect of MREs based CR increased, while that of MREs based BR was opposite. The zero field modulus and magnetic modulus of MREs based CR vulcanizate were decreased, but its relative magnetorheological effect was increased.
作者 黄兆阁 李长宇 孟祥坤 雍占福 HUANG Zhaoge;LI Changyu;MENG Xiangkun;YONG Zhanfu(School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042,China)
出处 《功能材料》 EI CAS CSCD 北大核心 2019年第12期12085-12088,12096,共5页 Journal of Functional Materials
基金 山东省自然科学基金资助项目(ZR2016XJ001)
关键词 氯丁橡胶(CR) 磁流变弹性体(MREs) 磁流变效应 磁致模量 neoprene rubber magnetorheological elastomer magnetorheological effect magnetic modulus
  • 相关文献

参考文献3

二级参考文献27

  • 1方生,龚兴龙,张先舟,张培强.磁流变弹性体力学性能的测试与分析[J].中国科学技术大学学报,2004,34(4):456-463. 被引量:23
  • 2李彩虹,张玉亮,宋文玲,康万利.颗粒在非牛顿液体中的沉降[J].大庆石油学院学报,1995,19(1):6-10. 被引量:6
  • 3汪建晓,孟光.磁流变弹性体研究进展[J].功能材料,2006,37(5):706-709. 被引量:52
  • 4G. H. Hitchcock, X. J. Wang, and F. Gordaninejad, J. Vib. Acoustics 129, 641 (2007).
  • 5J. M. Ginder, M. E. Nichols, L.D. Elie, and I. L. Tardiff, Smart Structures and Materials 1999: Smart Materials Technologies, Proceedings of SPIE, 3675, 131 (1999).
  • 6C. W. Maranville and J. M. Ginder, Int. J. Appl. Electromagnetics Mech. 22, 25 (2005).
  • 7T. Shiga, A. Okada, and T. Kurauchi, J. Appl. Polym. Sci. 58, 787 (1995).
  • 8J. M. Ginder,M. E. Nichols, L. D. Elie, and S. M. Clark, Smart Structures and Materials 2000: Smart Structures and Integrated Systems, Proceedings of SPIE, 3985, 418 (2000).
  • 9A. M. Albanese and K. A. Cunefare, Smart Structures and Materials 2003: Damping and Isolation, Proceed- ings of SPIE, 5052, 36 (2003).
  • 10H. X. Deng, X. L. Gong, and L. H. Wang, Smart Mater. Struct. 15, N111 (2006).

共引文献16

同被引文献88

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部