期刊文献+

混合电子供体促进非光合微生物菌群固碳效率的分子生态机制

Molecular ecological mechanism of mixed electron donors promoting carbon fixation efficiency of non-photosynthetic microbial community
下载PDF
导出
摘要 前期研究已从全国各地的表层海水中分离驯化得到了能有效固碳的非光合固碳微生物菌群(Non-photosynthetic microbial community,NPMC),并发现在好氧条件下,混合电子供体(Mixture of Electron Donors,MEDs)(配比为0.46%NaNO2、0.50%Na2S2O3和1.25%Na2S)能显著提高其固碳效率。但其与最佳H2作为电子供体相比促进效果如何,其促进机制是什么,尚未见有报道。本文在比较了NPMC以MED和H2为电子供体的固碳效率基础上,从NPMC的固碳基因丰度和表达活性角度分析了MED促进NPMC固碳效率的分子生态学机制。结果表明:(1)MED系统的固碳效率可以达到H2系统的水平,并显著高于传统的NH4^+系统的固碳效率;(2)卡尔文循环关键基因cbbL和cbbM在MED系统中的较高基因丰度和同时较高的表达可能是MED促进NPMC固碳效率的一个重要原因;(3)由于MED系统含有不同价态的N和S,有利于多种微生物生长,丰富了微生物多样性,为形成不同菌种之间的相互作用促进cbbL和cbbM的同时高表达提供了条件。 The non-photosynthetic microbial communities(NPMC)were isolated and domesticated from the surface seawater from all over the country in previous studies,and it was found that under aerobic conditions,mixed electron donors(MED)(consisted of 0.46% NaNO2,0.50% Na2S2O3 and 1.25% Na2S)could significantly improve its carbon fixation efficiency.However,compared with the optimal H2 as an electron donor,the promoting effect and the promoting mechanism were not reported.In this paper,based on the comparison of the carbon fixation efficiency of NPMC with MED and H2 as electron donors,the molecular ecological mechanism of MED promoting carbon fixation efficiency of NPMC was analyzed from the perspective of carbon fixation gene abundance and expression activity of NPMC.The results showed that:(1)The carbon fixation efficiency of the MED system could reach the level of the H2 system and was significantly higher than that of the traditional NH4^+ system;(2)The higher gene abundance and higher expression of Calvin Cycle key genes cbbL and cbbM in MED system might be an important reason for MED to promote the carbon fixation efficiency of NPMC;(3)Since MED system contained different valence states of N and S,it was beneficial to the growth of various microorganisms and enriched microbial diversity.It provided conditions for the interactions between different species which contributed to the simultaneous high expression of cbbL and cbbM genes.
作者 祝思媛 席雪飞 王磊 ZHU Siyuan;XI Xuefei;WANG Lei(State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, College of Environmental Science and Engineering, Shanghai 200092, China;Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China;Shanghai Institute of Environmental Science, Shanghai 200233, China)
出处 《工业微生物》 CAS 2019年第6期1-8,共8页 Industrial Microbiology
基金 国家自然科学基金项目(21577101) 国家重点研发计划课题(2018YFC1900900)
关键词 非光合固碳菌群 混合电子供体 固碳效率 cbb基因丰度 转录活性 non-photosynthetic carbon-fixing microorganism mixed electron donors carbon fixation efficiency cbb gene abundance transcription activity
  • 相关文献

参考文献3

二级参考文献37

  • 1程丽华,张林,陈欢林,高从堦.微藻固定CO_2研究进展[J].生物工程学报,2005,21(2):177-181. 被引量:33
  • 2Thomas. Carbon dioxide capture for storage in deep geologic formations-result from the CO2 capture project. Elsevier, UK, 2005:1-15.
  • 3Keffer JE and Kleinheinz GT. Use of Chlorella vulgaris for CO2 mitigation in a photobioreactor , Journal of Industrial Microbiology & Biotechnology, 2002 , 29 : 275-280.
  • 4Hamasaki A., Shioji N., Ikuta Y., et al.Carbon dioxide fixation by microalgal photosynthesis using actual flue gas from a power plant, Appl. Biochem. Biotechnol., 1994, 45:799-809.
  • 5Bae S., Kwak K., Kim S,et al.Isolation and characterization of CO2-fixing hydrogen-oxidizing marine bacteria, Journal of Bioscience and Bioengineering, 2001,91(5): 442-448.
  • 6Stohr R., Waberski A., and Volker H., et al. Hydrogenahermus marinus gcn. nov., sp. nov., a novel thermophilic hydrogen-oxidizing bacterium, recognition of Calderobacterium hydrogenophilum as a member of the genus Hydrogenobacter and proposal of the reclassification of Hydrogenobocter acidophilus as Hydrogenobaculum acidophilum gen. nov. , comb. nov. , in the phylum Hydrogenobacter/Aquifex', International Journal of Systematic and Evolutionary Microbiology, 2001, 51 : 1853- 1862.
  • 7Atomi H. 2002. Microbial enzymes involved in carbon dioxide fixation. l Biosci Bioeng. 94:497-505.
  • 8Bach W, Edwards K J. 2003. Iron and sulfide oxidation within the basaltic ocean crust-extent, processes, timing, and implications for chemolithoautotrophic primary biomass production. Geochim Cosmochim Act. 67:3871-3887.
  • 9Campbell B J, Cary S C. 2004. Abundance of reverse tricarboxylic acid cycle genes in free-living microorganisms at deep-sea hy-drothermal vents. Appl Environ Microbiol, 70:6282-6289.
  • 10Campbell B J, Engel A S, Porter M L, et al. 2006. The versatile epsilon-proteobacteria: key players in sulphidic habitats. Nat Rev Microbiol, 4:458-468.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部