摘要
为研究金属-氟聚物包覆下装药在密闭空间内的爆炸释能特性,制备了金属-氟聚物与装药质量比(η)分别为0、0.30、0.63的3种试样,并在爆炸罐中开展了静爆试验,对比了3种试样爆炸后的冲击波超压、比冲量、温度与准静态压力。结果表明,金属-氟聚物包覆层显著降低了装药爆炸后的冲击波超压峰值及比冲量,但其下降规律与含惰性包覆层的装药类似,说明金属-氟聚物包覆层的二次反应对冲击波超压及比冲量没有明显贡献;而包覆层能有效提高装药爆炸后罐内的气体温度和准静态压力,当金属-氟聚物与装药的质量比为0.30和0.63时,爆炸后罐体内气体的最高温升幅度达到291K和422K,相比裸装药的254K分别提升14%和66%,而准静态压力峰值分别为0.105 MPa和0.131 MPa,相比裸装药的0.095MPa分别提升了10%和38%,表明η为0.63时,更能促进装药反应程度的增加。
In order to study the energy release characteristics of metal-fluoropolymer coated charges in confined space,three samples with metal-fluoropolymer to charge mass ratios(η)of 0,0.3 and 0.63 were prepared,and static explosion tests were carried out in an explosion tank.The overpressure of the shock wave,specific impulse,temperature and quasi-static pressure of the three samples after explosion were compared and analyzed.The results show that the metal-fluoropolymer cladding significantly reduced the peak value of overpressure of shock wave and impulse,but the reduction is similar to the charge coated by inert cladding,which means that secondary reaction of the metal-fluoropolymer cladding has no significant contribution to the overpressure of shock wave and impulse.The cladding can effectively improve the gas temperature and quasi-static pressure after the explosion of charges in the tank.When the mass ratios of metal-fluoropolymer to charge are about 0.30 and 0.63,the highest temperature rise of the gas in the tank reach 291K and 422K,respectively,which are up to 14%and 66%higher than that of the naked charge(254K),while the quasi-static pressure reach 0.105 MPa and 0.131 MPa,respectively,which are 10%and 38%higher than that of the naked charge.Indicating that whenηis 0.63,it can promote the reaction degree of charge.
作者
王辉
沈飞
李彪彪
王胜强
WANG Hui;SHEN Fei;LI Biao-biao;WANG Sheng-qiang(Xi′an Modern Chemistry Research Institute,Xi′an 710065,China)
出处
《火炸药学报》
EI
CAS
CSCD
北大核心
2019年第6期626-630,共5页
Chinese Journal of Explosives & Propellants
基金
国防基础科研专项
关键词
爆炸力学
金属-氟聚物
包覆层
内爆
冲击波
准静态压力
explosion mechanics
metal-fluoropolymer
cladding
internal explosion
shock wave
quasi-static pressure