摘要
讨论一类在三维空间中具有平方反比势的非齐次非线性Schrodinger方程.首先构造一个典型的交叉约束变分问题及几个强制约束变分问题,得到相应的发展不变流形.通过对这些变分问题及发展不变流形的研究,得到爆破解存在的充分条件及其驻波的强不稳定性.
In this paper,we study the focusing cubic inhomogeneous nonlinear Schrdinger equation with inverse-square potential in three dimensions.By constructing a typical cross-constrained variational problem and several constraint variational problems,we get the corresponding invariant evolution flows.Analyzing these variational problems and these invariant evolution flows,the sufficient conditions of the blow-up solutions and the strong instability of the standing waves are obtained for the Cauchy problem.
作者
李玉林
黄娟
周凡
LI Yulin;HUANG Juan;ZHOU Fan(College of Mathematical Science,Sichuan Normal University,Chengdu 610066,Sichuan)
出处
《四川师范大学学报(自然科学版)》
CAS
北大核心
2020年第1期27-32,共6页
Journal of Sichuan Normal University(Natural Science)
基金
国家自然科学基金(11401409)
四川省科技厅应用基础研究项目(2018JY0486)
关键词
平方反比势
驻波
强不稳定性
inverse-square potential
blow-up
strong instability