摘要
讨论了一类奇异摄动非线性分数阶时滞问题.首先利用奇异摄动方法求出了问题的外部解.再利用伸展变量法构造了问题在边界附近的两个边界层校正项,得出了所提问题的形式渐近解.最后,在合适的假设条件下,利用微分不等式理论证明了解的一致有效性,并给出了结论及未来的研究方向.
A class of fractional nonlinear singularly perturbed problems with time delays were considered.Firstly,the outer solution was constructed by means of the singular perturbation method.Then,a stretched variable was introduced to obtain 2 boundary layer correction items for the solution,and the asymptotic analytic expansion solution to the problem was also acquired.Finally,under suitable conditions,the theory of differential inequalities was applied to prove the uniformly valid asymptotic expansion of the solution to the original problem,and the conclusion with the future research directions was given.
作者
朱红宝
ZHU Hongbao(School of Mathematics&Physics,Anhui University of Technology,Maanshan,Anhui 243002,P.R.China)
出处
《应用数学和力学》
CSCD
北大核心
2019年第12期1356-1363,共8页
Applied Mathematics and Mechanics
基金
安徽省高校自然科学研究重点项目(KJ2019A0062)
关键词
分数阶微分方程
非线性
时滞
奇摄动
fractional differential equation
nonlinear
time delay
singularly perturbed