摘要
论文研究了三维空间中带粘性项波动方程组解的逐点估计.同时考虑了两种非线性项:具有散度形式的非线性项和具有拉普拉斯形式的非线性项.利用长波和短波分解法,结合能量法和格林函数,得到大时间渐近形态解的逐点估计,并证实解的逐点估计可被相应具有不同传播速度(c1≠c2)的广义惠更斯波控制.同时,还得到了p≥1时最优的L^p衰减率.
The Cauchy problem for two systems of wave equations with viscosity in dimension three is considered.By using the long wave and short wave decomposition method together with energy method and Green function,the pointwise estimates of the time-asymptotic shape of the solution are given,which exhibit two kinds of generalized Huygens’waves.As a byproduct,the optimal L^p-decay rates with p≥1 of the solutions of these systems are also established.
作者
吴志刚
缪小芳
Wu Zhigang;Miao Xiaofang(College of Science,Donghua University,Shanghai 201620)
出处
《数学物理学报(A辑)》
CSCD
北大核心
2019年第6期1421-1442,共22页
Acta Mathematica Scientia
基金
上海市自然科学基金(16ZR1402100)
中央高校基本科研业务费专项资金(2232019D3-43)~~
关键词
格林函数
波动方程组
一般惠更斯波
Green function
Systems of wave equations with viscosity
Huygens’principle