摘要
扶贫对象的精准识别是实现精准扶贫的重要条件。实现贫困数据的精准分类与识别以及贫困识别由定性到定量、由单维瞄准向多维瞄准的转变是精准扶贫的重要基础。精准识别可以采用大数据分析中的分类算法实现。本文基于可持续生计分析框架,从人力资本、社会资本、自然资本、物质资本、金融资本和生计环境六个方面建立了多维贫困指标体系,运用随机森林算法构建了精准识别模型,并采用中国家庭追踪调查数据(CFPS),对扶贫对象精准识别模型的分类及识别效果进行了评价,结果表明模型效果良好。
Targeted identification of poverty alleviation objects is an important precondition to achieve targeted poverty alleviation.Realization of classification and identification of big data,conversion from quantity analysis to quality analysis and change from linear targeting to multi-dimensional targeting are the basis of targeted poverty alleviation.Targeted identification can be achieved by using classification algorithm in big data analysis.Based on the framework of sustainable livelihood analysis,this paper establishes a multi-dimensional poverty index system based on sustainable livelihood from six aspects:human capital,social capital,natural capital,physical capital,financial capital and living environment.Using stochastic forest algorithm to construct a targeted identification model and the data done by Institute of Social Science Survey,Peking University,this paper evaluates the effect of the model for classification and identification of poverty alleviation objects.The results show its validity and reliability.
出处
《华中农业大学学报(社会科学版)》
CSSCI
北大核心
2019年第6期21-29,160,共10页
Journal of Huazhong Agricultural University(Social Sciences Edition)
基金
国家社会科学基金项目“新时代我国西部地区军民融合创新生态系统演化机理及发展战略研究”(18BGL033)
陕西省自然科学基础研究计划项目“商业模式创新视域下陕西省军民融合发展模式研究”(2018JM7006)
关键词
可持续生计
多维贫困指标
分类
随机森林算法
精准识别
sustainable livelihoods
multidimensional poverty indicators
classification
random forest algorithms
accurate identification