期刊文献+

ARIMA模型对妊娠期糖尿病住院人数的预测 被引量:1

Prediction of the Number of Inpatients for Gestational Diabetes Mellitus with ARIMA Model
下载PDF
导出
摘要 目的探讨自回归积分滑动平均模型(Autoregressive Integrated Moving Average Model,ARIMA)在妊娠期糖尿病住院病人预测中的应用,为妊娠期糖尿病(gestational diabetes mellitus,GDM)和母亲妊娠期糖尿病婴儿(infants of diabetes mothers,IDM)制定GDM和IDM健康管理工作提供依据。方法利用2013年1月1日-2017年12月31日湖北省妇幼保健院成人内科每月GDM住院患者数据,建立ARIMA模型预测GDM住院人数。结果通过参数和模型拟合优度检验以及残差白噪声序列检验,得到模型ARIMA(0,1,1)×(0,1,1)12,R2=0.439,BIC=3.999,Ljung-Box Q=15.714,P=0.473。预测2018年每月GDM住院人数实际值在预测值的95%可信区间内。结论ARIMA模型拟合效果较好,预测精度更高,可用于GDM住院人数的预测。 Objective To explore the application of ARIMA model to predict number of inpatients for gestational diabetes mellitus,so as to provide a scientific reference for more effective management of GDM and IDM.Methods The prediction model was built using the occurrence monthly number of inpatients for GDM from January 1 st 2013 to December 31 st 2019 in Hubei Provincial Maternal and Child Health Hospital and the predictive performance of this model was verified by the number of hospitalized patients of GDM in 2018.Results ARIMA(0,1,1)×(0,1,1)12 was built according to the parameter and model test of goodness of fit and Ljung-Box Q test(R2=0.439,BIC=3.999,Ljung-Box Q=15.714,P=0.473).The actual values of occurrence number of inpatients patients for GDM monthly in 2018 were among 95%CI.Conclusion ARIMA model has a good fitting effect and a high forecast precision,and can be used for predicting number of inpatients for GDM.
作者 戴琼 侯洁 夏剑清 王晏芹 徐丹 刘建琼 陈凤 黄大健 张祥 陈晓红 DAI Qiong;HOU Jie;XIA Jianqing(Maternal and Child Health Hospitalof Hubei Province,Wuhan,430070,China)
出处 《中国社会医学杂志》 2019年第6期655-658,共4页 Chinese Journal of Social Medicine
基金 湖北省卫生和计划生育委员会创新团队项目(WJ2018H0134) 湖北省卫生和计划生育委员会面上项目(WJ2018H0145) 中国疾病预防控制中心妇幼保健中心科研项目(2018FYH014)
关键词 妊娠期糖尿病 住院人数 ARIMA模型 预测 Gestational diabetes mellitus Inpatients ARIMA model Prediction
  • 相关文献

参考文献2

二级参考文献19

  • 1李廷杰,李燕芬,陈秀山.应用单列时间序列统计方法分析白喉发病升降趋势[J].数理医药学杂志,1997,10(2):133-136. 被引量:1
  • 2冯丹,赵京丽,郝璐,曹秀堂,刘丽华.基于处方监测的流感样疾病预警模型研究[J].预防医学论坛,2007,13(10):875-877. 被引量:6
  • 3Belser JA,Bridges CB,Katz JM,et al.Past,present,and possible future human infection with influenza virus A subtype H7[J].Emerg Infect Dis,2009,15(6):859-865.
  • 4Craigmile PF,Kim N,Fernandez SA,et al.Modding and detection of respiratory-related outbreak signatures[J].BMC Med Inform Decis Mak,2007,7:28.
  • 5Tang S,Xiao Y,Yang Y,et al.Community-based measures for mitigating the 2009 H1N1 pandemic in China[J].PLoS One,2010,5(6):el0911.
  • 6Gojovic MZ,Sander B,Fisman D,et al.Modelling mitigation strategies for pandemic (H1N1) 2009[J].CMAJ,2009,181 (10):673-680.
  • 7Cruz Pacheco G,Duran L,Esteva L,et al.Modelling of the influenza A(H1N1)v outbreak in Mexico City,April-May 2009,with control sanitary measures[J].Euro Surveill,2009,14(1):1-3.
  • 8Sypsa V,Hatzakis A.School closure is currently the main strategy to mitigate influenza A(H1N1)v:a modeling study[J].Euro Survcill,2009,14(1):1-7.
  • 9Eggo RM,Cauchemez S,Ferguson NM.Spatial dynamics of the 1918 influenza pandemic in England,Wales and the United States[J].J R Soc Interface,2011,8:233-243.
  • 10Lee BY,Bedford VL,Roberts MS,et al.Virtual Epidemic in a Virtual City:Simulating the Spread of Influenza in a United States Metropolitan Area[J].Transl Res,2008,151 (6):275-287.

共引文献43

同被引文献11

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部