期刊文献+

基于无人机多光谱遥感的土壤含盐量反演模型研究 被引量:50

Soil Salt Inversion Model Based on UAV Multispectral Remote Sensing
下载PDF
导出
摘要 为探究无人机多光谱遥感技术快速监测植被覆盖下的土壤含盐量问题,以内蒙古河套灌区沙壕渠灌域内4块不同盐分梯度的耕地为研究区域,利用无人机搭载多光谱传感器获取2018年8月遥感影像数据,并对0~40 cm的土壤进行盐分测定。分别引入敏感波段组、光谱指数组、全变量组作为模型输入变量,采用支持向量机(Support vector machine,SVM)、BP神经网络(Back propagation neural network,BPNN)、随机森林(Random forest,RF)、多元线性回归(Multiple linear regression,MLR)4种回归方法,建立基于3组输入变量下的土壤盐分反演模型,并进行精度评价,比较不同输入变量、不同回归方法对模型精度的影响,评价并优选出最佳盐分反演模型。结果表明,通过分析3个变量组的R 2和RMSE,光谱指数组在4种回归方法中均取得了最佳的反演效果,敏感波段组和全变量组在不同的回归方法中反演效果不同。4种回归方法中,3种机器学习算法反演精度明显高于MLR模型,且MLR模型中的敏感波段组和全变量组均出现了“过拟合”现象,RF算法在3种机器学习算法中表现最优,SVM算法和BPNN算法在基于不同变量组的模型中表现也不相同。基于光谱指数组的RF的盐分反演模型在12个模型中取得了最佳的反演效果,R^2 c和R^2 v分别达到了0.72和0.67,RMSEv仅为0.112%。 Fast acquisition of soil salt content under vegetation cover is the objective need of saline soil management and utilization.Four kinds of croplands with different salinization values in Shahaoqu District of Hetao Irrigation Area were set as the study areas.The UAV equipped with a multi-spectral camera obtained the remote sensing image data of August,meanwhile,the soil salinity with depth of 0~40 cm was tested.The sensitive band group,spectral index group and full variable group were introduced as model input variables.Four regression methods,including support vector machine(SVM),BP neural network(BPNN),random forest(RF)and multiple linear regression(MLR),were used to establish soil salinity inversion models which were based on three groups of input variables,respectively.Firstly,the model precision was evaluated,and then the effects of different input variables and different regression methods on the model precision were compared,finally the best salt inversion model was evaluated and optimized.The results indicated that comparing the R 2 and RMSE of three variable groups,the spectral index group achieved the best inversion effect between the four regression model methods,and the sensitive band group and the full variable group had advantages and disadvantages in different regression algorithms.Between the four regression methods,the inversion accuracy of three machine learning regression algorithms was significantly higher than that of the MLR model.Moreover,both the sensitive band group and the full variable group in the MLR model showed the phenomenon of“overfitting”.And RF algorithm performed best between the three machine learning algorithms.Besides,SVM algorithm and BPNN algorithm performed better and worse in the model with different variable groups.The RF salt inversion model based on the spectral index group achieved the best inversion effect among the 12 models,the R^2 c and R^2 v reached 0.72 and 0.67,respectively,and the RMSE v error was only 0.112%.The research result can provide a theoretical reference for soil salinity monitoring in arid and semi-arid areas.
作者 张智韬 魏广飞 姚志华 谭丞轩 王新涛 韩佳 ZHANG Zhitao;WEI Guangfei;YAO Zhihua;TAN Chengxuan;WANG Xintao;HAN Jia(College of Water Resources and Architectural Engineering,Northwest A&F University,Yangling,Shaanxi 712100,China;The Key Laboratory of Agricultural Soil and Water Engineering in Arid Areas,Ministry of Education,Northwest A&F University,Yangling,Shaanxi 712100,China)
出处 《农业机械学报》 EI CAS CSCD 北大核心 2019年第12期151-160,共10页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家重点研发计划项目(2017YFC0403302) 杨凌示范区科技计划项目(2018GY-03) 国家自然科学基金项目(41502225)
关键词 土壤含盐量 无人机 多光谱遥感 变量组 机器学习 多元线性回归 soil salt unmanned aerial vehicle multispectral remote sensing variable group machine learning multiple linear regression
  • 相关文献

参考文献22

二级参考文献336

共引文献661

同被引文献821

引证文献50

二级引证文献230

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部