摘要
目的:针对高超声速飞行过程中机体前缘和进气道之间相互影响的问题,本文从头部进气的角度出发,利用内转式进气道高总压恢复系数和高压缩效率的特性,探索前体与进气道的一体化设计。创新点:1.提出一种内转式轴对称基准流场的构建方法,并设计生成内转式进气道;2.设计内转式乘波前体/进气道一体化构型,并提出将进气道进口型线划分为前体前缘型线(FCC)和进气道唇口型线(LCC)。方法:1.构建内转式轴对称基准流场(图9);2.在基准流场中生成内转式进气道并设计构造进气道外表面(图13);3.通过仿真模拟,验证所提方法及原理的正确性和有效性(图15~20)。结论:1.基于特征线理论,设计并求解内转式乘波前体/进气道轴对称基准流模型(IARFM),同时设计并生成了内转式进气道和外壁面;提出将进气道进口型线划分为前体前缘型线(FCC)和进气道唇口型线(LCC)。2.提出了内转式乘波前体/进气道(ITWF)的一体化设计方法,并通过对无粘数值模拟结果与理论设计值的比较,验证了设计方法的正确性和有效性。3.经过分析可知,激波形状和位置的数值模拟结果与基准流模型吻合较好。这些结果验证了无粘流设计条件下的一体化设计过程的正确性,且该一体化结构具有较高的总压恢复系数和气流捕获效率。
In this study, an inward turning waverider forebody/inlet axisymmetric reference flow model with a conical leadingedge shock wave was designed based on the method of characteristics. The design eliminates the lip shock wave at the shoulder point. Based on the reference flow model, a novel integrated design method for an inward turning waverider forebody/inlet is proposed. The streamline tracing method and related technologies were used to generate the integrated configuration in the reference flow model. During the design process, the inward turning inlet was divided into an upper and a lower surface. After the formation of these surfaces, the front external surface and the lip external surface were simultaneously generated. Finally, an integrated configuration was formed with these four generated surfaces and a base plane. An analysis of the formed configuration was carried out using numerical simulation software, which verified the correctness and feasibility of the method. The conclusions drawn from the research indicate that the integrated design method is feasible and effective.
基金
Project supported by the National Natural Science Foundation of China(No.11702322)
the Hunan Provincial Natural Science Foundation of China(No.2018JJ3589)