期刊文献+

基于k近邻密度峰值聚类混合算法的网络入侵检测 被引量:5

Network Intrusion Detection Based on K Nearest Neighbor Density Peak Clustering Hybrid Algorithm
下载PDF
导出
摘要 由于传统的入侵检测系统无法识别新型网络入侵问题,在k近邻(KNN)算法和密度峰值聚类(DPC)算法的基础上,提出了一种基于k近邻的密度峰值聚类混合学习算法(DPNN),将DPC用于训练,KNN用于分类,结合KDD-CUP 99数据集作为入侵检测中的标准数据集,并利用DPNN在入侵检测中找到更准确和高效的分类器。实验结果表明,DPNN优于支持向量机(SVM)、k近邻(KNN)等多种机器学习方法,它能够有效地检测入侵攻击并具有良好的性能。 Because of the traditional intrusion detection system can not identify the new network intrusion problem, based on the k nearest neighbor algorithm(KNN) and the density peak clustering(DPC), a density peak clustering hybrid learning model(DPNN) based on the nearest neighbor of k is proposed. DPC is used for training, KNN is used for classification, and KDD-CUP 99 data sets are used as intrusion detection. The standard dataset is detected, and DPNN is used to find more accurate and efficient classifier in intrusion detection. The experimental results show that DPNN is better than support vector machine(SVM), k nearest neighbor(KNN) and other machine learning methods. It can effectively detect intrusion attacks and have good performance.
作者 王志勇 WANG Zhi-yong(Henan Provincial Land Resources Electronic Administration Center,Zhengzhou 450008 China)
出处 《自动化技术与应用》 2019年第12期48-52,共5页 Techniques of Automation and Applications
关键词 网络检测 入侵攻击 密度峰值聚类 K近邻算法 Network detection intrusion attack density peak clustering k nearest neighbor algorithm
  • 相关文献

参考文献14

二级参考文献185

共引文献325

同被引文献62

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部