期刊文献+

网络安全中基于用户群体偏好的隐私保护算法 被引量:2

Privacy Protection Algorithm Based on User Group Preference in Network Security
下载PDF
导出
摘要 随着电力通信网络及大数据应用技术的发展,用户对于网络安全的需求性也越来越高,因此网络中的用户喜好挖掘后的隐私保护也变得愈发重要。为了有针对性地实施终端用户隐私的保护,本文提出了一种基于用户偏好的主客观混合的体验质量(QoE)评估模型。本文以协同过滤方法为基础,根据用户使用记录实现基于用户群体的兴趣挖掘,从而满足单个用户数据的隐私保护并且降低模型判断复杂度,有效地保证了数据安全问题。实验结果表明,划分用户类型后的决策树可以获得更好的预测结果,保护了用户的隐私,从而保障了网络的安全。 With the development of power communication networks and big data application technologies, users are increasingly demanding network security. In the era of information, user interest mining and privacy protection become more important.In order to ensure the protection of privacy for end users, this manuscript proposes a subject-objective mixed quality of experience(Qo E) evaluation model based on service content and user interest. This manuscript incorporates the user group preference based on the collaborative filtering method, and realizes interest mining based on the user group according to the their using record, which satisfies the privacy protection of individual user data and reduces the complexity of model judgment. Based on the behavior pattern of user group, the extended program list is obtained to avoid single user data training, which effectively ensures the data security problem. Experimental results show that the decision tree after dividing the user type can obtain better prediction results and protect the privacy of users, thus ensure the security of the network.
作者 姜文婷 陈燕 亢中苗 JIANG Wen-ting;CHEN Yan;KANG Zhong-miao(Power Grid Dispatching Control Center of Guangdong Power Grid Co.,Ltd.,Guangzhou 510030 China)
出处 《自动化技术与应用》 2019年第12期97-103,共7页 Techniques of Automation and Applications
基金 广东电网科技项目(编号036000KK52170002)
关键词 网络安全 用户隐私保护 特征选择 协同过滤算法 network security user privacy protection feature selection collaborative filtering
  • 相关文献

参考文献4

二级参考文献67

  • 1王茜,杨莉云,杨德礼.面向用户偏好的属性值评分分布协同过滤算法[J].系统工程学报,2010,25(4):561-568. 被引量:24
  • 2余勇,林为民.基于等级保护的电力信息安全监控系统的设计[J].计算机科学,2012,39(S3):440-442. 被引量:20
  • 3邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:148
  • 4陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 5Moore AW, Zuev D. Internet traffic classification using Bayesian analysis techniques. In: Proc. of the 2005 ACM SIGMETRICS Int'l Conf. on Measurement and Modeling of Computer Systems, Banff, 2005. 50-60. http://www.cl.cam.ac.uk/-awm22 /publications/moore2005internet.pdf.
  • 6Madhukar A, Williamson C. A longitudinal study of P2P traffic classification. In: Proc. of the 14th IEEE Int'l Syrup. on Modeling, Analysis, and Simulation. Monterey, 2006. http://ieeexplore.ieee.org/xpl/ffeeabs_all.jsp?arnumber=1698549.
  • 7Moore AW, Papagiannaki K. Toward the accurate identification of network applications. In: Dovrolis C, ed. Proc. of the PAM 2005. LNCS 3431, Heidelberg: Springer-Verlag, 2005.41-54.
  • 8Karagiannis T, Papagiannaki K, Faloutsos M. BLINC: Multilevel traffic classification in the dark. In: Proc. of the ACM SIGCOMM. Philadelphia, 2005. 229-240. http://conferences.sigcomm.org/sigcomm/2005/paper-KarPap.pdf.
  • 9Roughan M, Sen S, Spatscheck O, Dutfield N. Class-of-Service mapping for QoS: A statistical signature-based approach to IP traffic classification. In: Proc. of the ACM SIGCOMM Internet Measurement Conf. Taormina, 2004. 135-148. http://www.imconf.net/imc-2004/papers/p 135-roughan.pdf.
  • 10Zuev D, Moore AW. Traffic classification using a statistical approach. In: Dovrolis C, ed. Proc. of the PAM 2005. LNCS 3431, Heidelberg: Springer-Verlag, 2005. 321-324.

共引文献319

同被引文献16

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部