摘要
由于人类心理能力的有限性,普遍算术的基底不是概念而是符号。胡塞尔认为算术的实质和基础是纯形式的算法;算法的任务是,按照符号与支配符号的规则,构造数符系统并把非系统的数符组合还原为相应数的标准形式。
Because of the finitude of the human mental capacity,the substrate of universal arithmetic is not the concept but the sign.Husserl holds that the essence and foundation of arithmetic is a purely formal algorithm,whose task is,according to signs and their rules,to construct a system of numerical symbols and then to reduce any non-systematic combination of symbols to its corresponding normal form.
作者
李义民
LI Yimin(School of Maxism,Putian University,Putian 351100,China;Research Center of the Science of Social Systems,Jiujiang University,Jiujiang 332005,China)
出处
《山东科技大学学报(社会科学版)》
2019年第6期19-25,共7页
Journal of Shandong University of Science and Technology(Social Sciences)
基金
教育部社科基金项目“胡塞尔早期的数学哲学方案研究”(18YJA720004)
江西省教育厅高校社科项目“胡塞尔的形式公理学研究”(ZX1404)
关键词
符号数学
普遍算术
句法还原
运算理论
symbolic mathematics
universal arithmetic
syntactic reduction
theory of operations