期刊文献+

采用改进模糊神经网络PID控制的移动机器人运动误差研究 被引量:15

Research on motion error of mobile robot controlled by improved fuzzy neural network PID
下载PDF
导出
摘要 移动机器人在复杂环境中运动,容易受到各种波形的干扰,导致移动机器人跟踪误差较大.对此,创建了移动机器人平面简图模型,建立移动机器人动力学方程式.在传统PID控制方法的基础上,设计了模糊神经网络PID控制方法.采用改进粒子群算法优化模糊神经网络PID控制参数,输出最优PID控制参数.采用Matlab软件对移动机器人跟踪误差进行仿真,并与传统PID控制方法进行比较和分析.仿真结果显示:在正弦波的干扰环境中运动,传统PID控制方法不能抑制外界环境的干扰,实际运动轨迹与理论运动轨迹偏差较大;而改进模糊神经网络PID控制方法能够抑制外界环境的干扰,实际运动轨迹与理论运动轨迹偏差较小.移动机器人控制系统采用改进模糊神经网络PID控制方法,能够在线调整PID控制器参数,控制精度较高. Mobile robots moving in complex environments are easily disturbed by various waveforms,which results in large tracking error of mobile robots.In this regard,a planar sketch model of mobile robot is established,and the dynamic equation of mobile robot is established.Based on the traditional PID control method,a fuzzy neural network PID control method is designed.The improved particle swarm optimization algorithm is used to optimize the parameters of fuzzy neural network PID control and output the optimal parameters of PID control.The tracking error of mobile robot is simulated with Matlab software,and compared with the traditional PID control method.The simulation results show that the traditional PID control method can not suppress the disturbance of the external environment in the disturbance environment of sinusoidal wave,and the deviation between the actual trajectory and the theoretical trajectory is large.The improved fuzzy neural network PID control method can suppress the disturbance of the external environment,and the deviation between the actual trajectory and the theoretical trajectory is small.The mobile robot control system adopts improved fuzzy neural network PID control method,which can adjust the parameters of the PID controller online and has high control accuracy.
作者 许洋洋 王莹 薛东彬 XU Yangyang;WANG Ying;XUE Dongbin(School of Mechanical and Electrical Engineering,Zhengzhou University of Industrial Technology,Zhengzhou 451150,Henan,China;School of Mechanical and Electrical Engineering,Henan University of Technology,Zhengzhou 450007,Henan,China)
出处 《中国工程机械学报》 北大核心 2019年第6期510-514,共5页 Chinese Journal of Construction Machinery
基金 河南省高等学校重点科研计划资助项目(19A520042)
关键词 移动机器人 PID控制 改进粒子群算法 误差 仿真 mobile robot PID control improved particle swarm optimization error simulation
  • 相关文献

参考文献7

二级参考文献49

  • 1张春来,赵楠楠,杨明.模糊自整定PID参数控制器在直流调速系统中的应用[J].大连海事大学学报,2006,32(3):72-74. 被引量:8
  • 2姜玉乾.基于解耦和H-∞鲁棒的非完整移动机器人轨迹跟踪控制研究[D].南京:南京航空航天大学,2007.
  • 3CampionG, BastinG, d' Andrea-Novel B. Structural Proper- ties and Classification of Kinematic and Dynamic Models of Wheeled Mobile Robots [ J]. IEEE Transactions on Robotic- sand Automation, 1996,1 ( 1 ) :47 - 62.
  • 4FierroR, LewisF. L. Control of a nonholonomic mobile robot: backstepping kinematics into dynamics [ J ]. Decision and Control, 1995,12(4 ) :3805 - 3810.
  • 5DasT, KarI. N. Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots [ J]. Control Systems Technology ,2006,14(3 ) :501 - 510.
  • 6Farzad Pourbogbrat, Mattias P Karlsson. Adaptive control of dynamic mobile robots with nonholonomic constraints [ J ]. Computers and Electrical Engineering ,2002 ( 28 ) :241 - 253.
  • 7KanayamaY, KimuraY, MiyazakiF, et al. A stable tracking control method for an autonomous mobile robot [ J ]. Robotics and Automation, 1990,5 ( 1 ) :384 - 389.
  • 8黄伟军,蔡力钢,胡于进,王学林,凌玲.基于遗传算法与有向图拓扑排序的工艺路线优化[J].计算机集成制造系统,2009,15(9):1770-1778. 被引量:25
  • 9姚栋伟,吴锋,杨志家,俞小莉.基于增量式数字PID的汽油机怠速控制研究[J].浙江大学学报(工学版),2010,44(6):1122-1126. 被引量:19
  • 10罗天资,陈卫兵,邹豪杰,李忠良.直线电机模糊增量PID控制算法的研究[J].测控技术,2011,30(2):56-59. 被引量:27

共引文献32

同被引文献209

引证文献15

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部