摘要
移动机器人在复杂环境中运动,容易受到各种波形的干扰,导致移动机器人跟踪误差较大.对此,创建了移动机器人平面简图模型,建立移动机器人动力学方程式.在传统PID控制方法的基础上,设计了模糊神经网络PID控制方法.采用改进粒子群算法优化模糊神经网络PID控制参数,输出最优PID控制参数.采用Matlab软件对移动机器人跟踪误差进行仿真,并与传统PID控制方法进行比较和分析.仿真结果显示:在正弦波的干扰环境中运动,传统PID控制方法不能抑制外界环境的干扰,实际运动轨迹与理论运动轨迹偏差较大;而改进模糊神经网络PID控制方法能够抑制外界环境的干扰,实际运动轨迹与理论运动轨迹偏差较小.移动机器人控制系统采用改进模糊神经网络PID控制方法,能够在线调整PID控制器参数,控制精度较高.
Mobile robots moving in complex environments are easily disturbed by various waveforms,which results in large tracking error of mobile robots.In this regard,a planar sketch model of mobile robot is established,and the dynamic equation of mobile robot is established.Based on the traditional PID control method,a fuzzy neural network PID control method is designed.The improved particle swarm optimization algorithm is used to optimize the parameters of fuzzy neural network PID control and output the optimal parameters of PID control.The tracking error of mobile robot is simulated with Matlab software,and compared with the traditional PID control method.The simulation results show that the traditional PID control method can not suppress the disturbance of the external environment in the disturbance environment of sinusoidal wave,and the deviation between the actual trajectory and the theoretical trajectory is large.The improved fuzzy neural network PID control method can suppress the disturbance of the external environment,and the deviation between the actual trajectory and the theoretical trajectory is small.The mobile robot control system adopts improved fuzzy neural network PID control method,which can adjust the parameters of the PID controller online and has high control accuracy.
作者
许洋洋
王莹
薛东彬
XU Yangyang;WANG Ying;XUE Dongbin(School of Mechanical and Electrical Engineering,Zhengzhou University of Industrial Technology,Zhengzhou 451150,Henan,China;School of Mechanical and Electrical Engineering,Henan University of Technology,Zhengzhou 450007,Henan,China)
出处
《中国工程机械学报》
北大核心
2019年第6期510-514,共5页
Chinese Journal of Construction Machinery
基金
河南省高等学校重点科研计划资助项目(19A520042)
关键词
移动机器人
PID控制
改进粒子群算法
误差
仿真
mobile robot
PID control
improved particle swarm optimization
error
simulation