摘要
为了适应城市规划阶段对建筑物地震灾害风险评估的需求,按照数据的易获取性、评估方法的简单易行性及评估结果的可靠性等原则开展建筑物地震灾害风险评估方法研究。综合考虑客观地震危险性和主观建筑易损性两方面因素,选取地震危险性、场地条件、容格率、地震强烈、建筑物结构类型、建设年代和建筑用途7项指标作为模型评价因子,并采用具有很强非线性映射能力与知识样本学习能力的BP神经网络建立了风险评估模型。最后,通过厦门市建筑物样本数据对该模型进行仿真训练与实例验证,结果表明该模型具有较高的可靠性,可为城市防灾规划编制中建筑物震害风险评估提供参考。
In order to meet the needs of building seismic hazard risk assessment in urban planning stage,the research on building seismic hazard risk assessment method is carried out according to the principles of easy access to data,simplicity of assessment method and reliability of assessment results.Considering both the objective seismic risk and the subjective vulnerability of buildings,seven indexes of seismic risk,site condition,plot ratio,seismic intensity,building structure type,construction time and building use are selected as model evaluation factors,and BP neural network with strong non-linear mapping ability and knowledge sample learning ability is used to establish the risk evaluation model.Finally,the simulation training and example verification of the model are carried out based on the building sample data of Xiamen city.The results show that the proposed model has high reliability,which can provide a reference for building seismic hazard risk assessment in the preparation of urban disaster prevention planning.
作者
王志涛
马祎
马东辉
WANG Zhitao;MA Yi;MA Donghui(College of Architecture and Urban Planning,Beijing University of Technology,Beijing 100124,China)
出处
《武汉理工大学学报(信息与管理工程版)》
CAS
2019年第6期549-554,共6页
Journal of Wuhan University of Technology:Information & Management Engineering
基金
国家重点研发计划基金项目(2018YFD1100902-1)
中国地震局重大政策理论与实践问题研究基金项目(CEAZY2019JZ14)
关键词
地震灾害
风险评估
BP神经网络
灾害风险
城市规划
earthquake disaster
risk assessment
BP neural network
disaster risk
city planning