期刊文献+

基于压缩感知的医学图像重建方法 被引量:3

Compressed Sensing-based Methods for Medical Image Reconstruction
下载PDF
导出
摘要 压缩感知理论广泛应用于信号和图像处理当中,该文分别利用三种基于压缩感知的重构算法,即凸优化算法中的基追踪算法、贪婪算法中的正交匹配追踪和分段正交匹配追踪算法,在采用小波变换实现稀疏表达的基础上,比较其二维图像重构效果。实验结果表明,借助压缩感知理论,能借助少量的稀疏系数,来精确重构出原始图像,图像质量与原始图像差异不大。因此,基于压缩感知的医学图像重建方法,在医学图像处理领域,具有十分重要的理论意义和临床应用价值。 Compressed sensing theory has been widely used in signal and image processing.In this paper,three reconstruction algorithms based on compressed sensing were used,namely,the base tracking algorithm of theconvex optimization algorithm,the orthogonal matching tracking algorithm of the greedy algorithm and the piecewise orthogonal matching tracking algorithm.Based on the wavelet transform to achieve sparse representation,the two-dimensional image reconstruction effects were compared.The experimental results showed that the original image could be accurately reconstructed based on a small number of sparse coefficients with the help of compressed sensing theory.The quality of the reconstructed images showed no obvious difference with that of the original images.Therefore,it suggests that the medical image reconstruction method based on compressed sensing has not only great theoretical significance but also great potential for medical image processing in clinical applications.
作者 张国平 牟忠德 ZHANG Guoping;MOU Zhongde(Jiangsu Cancer Hospital,Jiangsu Institute of Cancer Prevention and Control,Cancer Hospital Affiliated to Nanjing Medical University,Nanjing,210009)
出处 《生物医学工程学进展》 CAS 2019年第4期187-189,195,共4页 Progress in Biomedical Engineering
基金 江苏省肿瘤防治研究所博士后项目(SZL201715) 东南大学-南京医科大学合作研究项目(2242018K3DN22)
关键词 压缩感知 重建 算法 compressed sensing reconstruction algorithm
  • 相关文献

参考文献10

二级参考文献149

  • 1周旋,周树道,黄峰,周小滔.基于小波变换的图像增强新算法[J].计算机应用,2005,25(3):606-608. 被引量:34
  • 2张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 3方红,章权兵,韦穗.基于非常稀疏随机投影的图像重建方法[J].计算机工程与应用,2007,43(22):25-27. 被引量:27
  • 4王嘉梅.基于Matlab的数字信号处理与实践[M].西安:西安电子科技大学出版社,2007.
  • 5徐长发,李国宽.实用小波方法[M].武汉:华中理工大学出版社,2000:76-145.
  • 6B Kashin. The widths of certain finite dimensional sets and clas ses of smooth functions[J]. Izv Akad Nauk SSSR, 1977, 41 (2) :334-351.
  • 7Candes E, Romberg J, Tau T. Robust uncertainty principles Exact signal reconstruction from highly incomplete frequency {nformation[J].//IEEE Trans. Information Theory, 2006, 52 (4) : 489-509.
  • 8E Candes and J Romberg, Quantitative robust uncentainty principles and optimally sparse decompositions[J].Foundations of Comput Math, 2006, 6(2): 227- 254.
  • 9E Candes. T Tao Near optimal signal recovery from random projections: Universal encoding strategies, 2006 (12).
  • 10D. L. Donoho Compressed sensing,2006(04).

共引文献214

同被引文献13

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部