摘要
利用不动点理论,研究非线性Volterra积分微分方程x′(t)=-a(t)x(t)+c(t)x′(t-τ1(t))+∫t t-τ2(t)k(t,s)g(t,x(s),x′(s))d s,给出方程在C 1空间上零解全局渐近稳定性的充分条件。这些新条件不需要中立项系数c和时滞τ1可微,也不要求时滞τ2二次可微且τ′2≠1,仅需要c,τ1,τ2连续,所得结论推广了已有文献中的相应结果,并给出了一个实例加以说明。
In this paper,the following nonlinear Volterra Integro-Differential equation x′(t)=-a(t)x(t)+c(t)x′(t-τ1(t))+∫t t-τ2(t)k(t,s)g(t,x(s),x′(s))d s was studied by using the fixed point theory.Sufficient conditions for global asymptotic stability of zero solution of the equation in C 1.These new conditions do not require the neutral term coefficient c and the delayτ1 differentiability,nor theτ2 quadratic differentiability andτ′2≠1,but only the continuity of c,τ1 andτ2.The conclusions generalize the corresponding results in the literature and give an example to illustrate them.
作者
黄明辉
刘君
HUANG Ming-hui;LIU Jun(Guangzhou City Construction College,Guangzhou 510925,China)
出处
《长春师范大学学报》
2019年第12期1-5,共5页
Journal of Changchun Normal University
基金
广东省高职教育技能竞赛教指委立项课题“新工科背景下依托数学建模竞赛促进高职创新型人才培养模式改革研究”(201812008)
关键词
非线性
不动点定理
全局渐近稳定性
nonlinear
fixed point theorem
global asymptotic stability