期刊文献+

非线性Volterra积分微分方程的全局渐近稳定性 被引量:1

Global Asymptotic Stability of Nonlinear Volterra Integro-Differential Equation
下载PDF
导出
摘要 利用不动点理论,研究非线性Volterra积分微分方程x′(t)=-a(t)x(t)+c(t)x′(t-τ1(t))+∫t t-τ2(t)k(t,s)g(t,x(s),x′(s))d s,给出方程在C 1空间上零解全局渐近稳定性的充分条件。这些新条件不需要中立项系数c和时滞τ1可微,也不要求时滞τ2二次可微且τ′2≠1,仅需要c,τ1,τ2连续,所得结论推广了已有文献中的相应结果,并给出了一个实例加以说明。 In this paper,the following nonlinear Volterra Integro-Differential equation x′(t)=-a(t)x(t)+c(t)x′(t-τ1(t))+∫t t-τ2(t)k(t,s)g(t,x(s),x′(s))d s was studied by using the fixed point theory.Sufficient conditions for global asymptotic stability of zero solution of the equation in C 1.These new conditions do not require the neutral term coefficient c and the delayτ1 differentiability,nor theτ2 quadratic differentiability andτ′2≠1,but only the continuity of c,τ1 andτ2.The conclusions generalize the corresponding results in the literature and give an example to illustrate them.
作者 黄明辉 刘君 HUANG Ming-hui;LIU Jun(Guangzhou City Construction College,Guangzhou 510925,China)
出处 《长春师范大学学报》 2019年第12期1-5,共5页 Journal of Changchun Normal University
基金 广东省高职教育技能竞赛教指委立项课题“新工科背景下依托数学建模竞赛促进高职创新型人才培养模式改革研究”(201812008)
关键词 非线性 不动点定理 全局渐近稳定性 nonlinear fixed point theorem global asymptotic stability
  • 相关文献

参考文献3

二级参考文献36

  • 1[1]Xu Daoyi.Integro-diferential equations and delay integral inequalities[J].I o hoku Math.J.1992,44:365-378
  • 2[3]Harris C J, Miles J F. Stability of linear systems: some aspects of kinematic similarity[M]. London: Academic Press,1980
  • 3[4]Guo Shangjiang. Huang Lihong. Stability analysis of delayed Hopfield neural network[J]. PHYSICAL Review F,2003, 67:061902-1-061902-7
  • 4[5]Burton T A, Stability and Periodic Solutions of Ordinary and Functional Equations[M]. New York: Academic Press,1985
  • 5[6]Hara T, Yoneyama T, Iroh T Asymptotic stability criteria fir nonlinear Volterra integro-differential equations[J]. Ekvac.1990, 33:39-57
  • 6Burton T A. Liapunov functionals, fixed points and stability by Krasnoselskii' s theorem[ J ]. Nonlinear Stud, 2002,9 : 181-190.
  • 7Burton T A. Stability by Fixed Point Theory for Functional Differential Equations[ M ]. New York : Dover Publications, 2006.
  • 8Burton T A. A fixed point theorem of Krasnoselskii [ J ]. App Math Lett 1998( 11 ) : 85-88.
  • 9T A Burton. Stability and Periodic Solutions of Ordinary Functional Equations [ M ]. New York: Academic Press, 1985.
  • 10Burton T A, Furumochi T. Krasnoselskii' s fixed point the- orem and stability[ J ]. Nonlinear Anal, 2002,4(49) :445- 454.

共引文献7

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部