期刊文献+

S-Nekrasov矩阵的逆矩阵无穷范数的新估计式

Estimation of Infinity Norm for Inverse Matrix of S-Nekrasov Matrix
下载PDF
导出
摘要 根据S-Nekrasov矩阵的定义和特点,利用矩阵的分裂技巧构造出含有参数的S-SDD矩阵和对角矩阵,应用其逆矩阵的无穷范数估计和不等式放缩方法,获得了S-Nekrasov矩阵A的‖A-1‖∞的新估计式,该方法增加了估计的灵活性,得到的结果通过算例验证了其优越性。 Based on the definition and characteristics of the S-Nekrasov matrix, this study constructs the S-SDD matrix and diagonal matrix with parameters by using the splitting technique of the matrix, and the infinite norm estimation and inequality reduction method of its inverse matrix are applied to obtain a new estimation of S-Nekrasov matrix. In the end, the superiority of the method is tested though the numerical examples and the results show that flexibility of estimation is improved.
作者 周平 李艳艳 ZHOU Ping;LI Yanyan(Wenshan University,Wenshan 663099,China)
出处 《洛阳理工学院学报(自然科学版)》 2019年第4期84-88,共5页 Journal of Luoyang Institute of Science and Technology:Natural Science Edition
基金 云南省教育厅科学研究基金项目(2019J0910)
关键词 S-Nekrasov矩阵 无穷范数 估计式 S-Nekrasov matrix infinity norm estimation
  • 相关文献

参考文献5

二级参考文献26

  • 1VARGA R S. On diagonal dominance arguments for bounding||AIlL[J]. Linear Algebra and its applications, 1976, 14(3): 211-217.
  • 2CHENG G H, HUANG T Z. An upper bound for ||A-11Lof strictly diagonally dominant M-matrices[J]. Linear Algebra and its applications, 2007, 426(2-3): 667-673.
  • 3SHIVAKUMAR P N, WILLIAMS J J, YE Q, et al. On two-sided bounds related to weakly diagonally dominant M-matrices with application to digital circuit dynamics[J]. SIAM Journal on Matrix Analysis and Applications, 1996, 17(2): 298-312.
  • 4LI W. The infinity norm bound for the inverse of nonsingular diagonal dominant matrices[J]. Applications Math. Letter, 2007, 21 (2): 258-263.
  • 5HUANG T Z, ZHU Y. Estimation of ||A-1||for weakly chained diagonally dominant M-matrices[J]. Linear Algebra and its applications, 2010, 432(2-3): 670-677.
  • 6CHENG GUANGHUI, TAN Q1N, WANG ZHUANDE. Some inequalities for the minimum eigenvalue of the Hadamard product of an M-matrix and its inverse[J]. Journal of Inequalities and Applications, 2013, 65(1): 1029-1035.
  • 7Varga R S. Matrix iterative analysis[M]. Berlin: Springer, 2000.
  • 8Yang Z S, Zheng B, Liu X L. A new upper bound for IIA-111~ of a strictly a-Diagonally dominant M-Matrix [J]. Advances in Numerical Analysis, 2013, 2013: 1-6.
  • 9Xu S F. Theory and Methods about Matrix Computation [M]. Beijing: Tsinghua University Press, 1986.
  • 10CHENG G H, HUANG T Z. An Upper Bound for || A-1||∞ of Strictly Diagonally Dominant M-Matrices[J]. Linear Alge- bra Appl, 2007, 426(S2/3): 667-673.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部