期刊文献+

基于脑肌电信号的机械臂控制方法与实现 被引量:1

Robotic Control Method and Realization Based on EEG and EMG Signals
下载PDF
导出
摘要 针对脑-机接口目前存在的输入信息源单一、特征识别准确率低、输出控制指令少的问题,提出一种基于脑肌电信号的机械臂控制系统;首先对单侧手臂肌电信号和左右手运动想象脑电信号进行同步采集,然后分别进行特征提取和分类识别;并最终将分类模型应用于机械臂的多指令实时控制中;实验结果表明:20名被试者均实现了机械臂的多指令实时控制,且各动作识别准确率平均达到了95%以上;该系统模型丰富了混合脑-机接口的多样性,为脑-机接口在机械臂的控制应用提供了理论依据和实践基础。 Aiming at the problem that the current brain-computer interface has a single input information source,low feature recognition accuracy and few output control commands,this study presents a robotic arm control system based on EEG and EMG signals.Firstly,the unilateral arm myoelectric EMG and the left and right hand motion imaging EEG are acquired synchronously,and then feature extraction and classification recognition are performed respectively.Finally,the classification model is applied to the real-time control of the robot arm.The experimental results show that all the 20 subjects achieved real-time control of the manipulator,and the accuracy of each action recognition reached more than 85%.The system model enriches the human-computer interaction-mixed brain-computer interface diversity,and provides a theoretical basis and practical basis for the brain-computer interface technology for robotic control.
作者 李想 乔志强 张忠海 于功敬 孙健 成苈委 Li Xiang;Qiao Zhiqiang;Zhang Zhonghai;Yu Gongjing;Sun Jian;Cheng Liwei(Beijing Aerospace Measurement&Control Corp.,Ltd.,Beijing 100041,China;School of Automation,Beijing University of Posts and Telecommunications,Beijing 100876,China)
出处 《计算机测量与控制》 2019年第12期83-87,92,共6页 Computer Measurement &Control
关键词 脑-机接口 特征提取 分类识别 机械臂 brain-computer interface feature extraction classification robotic
  • 相关文献

参考文献8

二级参考文献105

  • 1谢洪波,王志中,黄海.表面肌电的支持向量机分类[J].北京生物医学工程,2004,23(2):94-96. 被引量:6
  • 2于德介,程军圣,杨宇.Hilbert-Huang变换在齿轮故障诊断中的应用[J].机械工程学报,2005,41(6):102-107. 被引量:77
  • 3张尧庭.多元统计分析引论[M].北京:科学出版社,1999.35-46.
  • 4Wolpaw JR, Birbaumer N, McFarland D J, et al. Brain-computer interfaces for communication and control [ J ]. Clinical Neurophysiology, 2002, 113 (6) :767 - 791.
  • 5Pfurtscheller G, Allison BZ, Brunner C, et al. The hybrid BCI [J]. Frontiers in Neuroscience, 2010, 4(Article 42) :1 -11.
  • 6LI Yuanqing, WANG Chuanchu, ZHANG Haihong, et al. An EEG based BCI system for 2D cursor control [ C ] // International Joint Conference on Neural Networks 2008, Hong Kong : 2008:2214 - 2219.
  • 7Pfurtscheller G, Lopes da Silva FH. Event-related EEG/MEG synchronization and desynchronization: basic principles [ J ]. Clinical Neurophysiology, 1999, 110:1842 - 1857.
  • 8Guo Fei, Hong Bo, Gao Xiaorong, et al. A brain-computer interface using motion-onset visual evoked potential [ J]. Journal of Neural Engineering, 2008, 5 :477 - 485.
  • 9Hong Bo, Guo Fei, Liu Tao, et al. N200 - speller using motion- onset visual response [ J ]. Clinical Neurophysiology, 2009, 120:1658 - 1666.
  • 10Zhang Dan, Xu Honglai, Wu Wei, et al. Integrating the spatial profile of the N200 speller for asynchronous brain-computer interfaces [ C ]// Proceedings of 33 a Annual International Conference of the IEEE EMBS. Boston: IEEE, 2011:4564 - 4567.

共引文献142

同被引文献5

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部