期刊文献+

用于多机器人的BML人机交互框架设计与实现 被引量:4

Design and Implementation of Human-robot Interaction Framework Based on BML for Multiple Robots
下载PDF
导出
摘要 指挥与控制多机器人系统是一项富有挑战性的任务,面对不同特性的机器人,静态的控制命令很难完全满足控制要求.随着机器人数量的增多,机器人的动作级命令也难以同时满足指挥多机器人系统的需求.本文使用受限的自然语言来控制多机器人系统,提出了一种基于Battle Management Language(BML)的框架来指挥多机器人系统.基于该框架,可以动态地添加机器人的能力与名字到词典中,再根据词典将受控的自然语言转化为标准的BML命令来控制多机器人系统.通过这种方式,可以让机器人执行动作级的命令,例如移动、转向等;也能让机器人执行任务级的命令,例如围捕、防守等.实验结果表明,使用本文提出的交互框架,可以指挥不同类型的机器人组成的系统. Commanding and controlling a multi-robot system is a challenging task.Static control commands are difficult to fully meet the requirements of controlling different robots.As the number of robots increases,it is difficult for the robot’s motion-level commands to simultaneously satisfy the demands of commanding multi-robot system.This paper uses a limited natural language to control multirobot systems,and proposes a framework based on Battle Management Language(BML)to command multi-robot systems.Based on the framework,the capabilities and names of the robot can be dynamically added to the dictionary,and the limited natural language can be converted into a standard BML command according to the dictionary to control the multi-robot system.In this way,the robot can execute motion-level commands,such as movement,steering,etc.,and can also perform task-level commands,such as enclosing,defense,etc.The experimental results show that the system composed of different types of robots can be commanded by using the interactive framework proposed in this paper.
作者 李筱 韩冰心 曾志文 肖军浩 卢惠民 雷思清 LI Xiao;HAN Bing-xin;ZENG Zhi-wen;XIAO Jun-hao;LU Hui-min;LEI Si-qing(College of Intelligence Science and Technology,National University of Defense Technology,Changsha 410073,China;92665 Forces,Zhangjiajie 427200,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2019年第12期2487-2493,共7页 Journal of Chinese Computer Systems
基金 国家重点研发计划项目(2017YFC0806500)资助 国家自然科学基金项目(U1813205)资助
关键词 多机器人系统 人机交互 BML multi-robot system human-robot interaction battle management language
  • 相关文献

参考文献2

二级参考文献9

  • 1彭军,吴敏.基于行为预测的多智能体协作模型[J].计算机工程与应用,2005,41(9):23-25. 被引量:8
  • 2Riedmiller M,Gabel T.On experiences in a complex and competitive gaming domain:reinforcement learning meets robocup[C].Proceedings of the 3rd IEEE Symposium on Computational Intelligence and Games,Honolulu,2007,17-23.
  • 3Stone P,Sutton R S,Kuhlmann G.Reinforcement learning for RoboCup-soccer keeps away[J].Adaptive Behavior,2005,13(3):165-188.
  • 4Vaclav Snasel,Jan Martinovic,Jan Kozusznik.Strategy description and modeling for Multi-Agent Systems[C].Proceedings of 7th International Conference on Computer Information Systems and Industrial Management Applications,Ostrava,C.R,2008,50-55.
  • 5Wu Bo,Wu Min,Cao Wei-hua.An algorithm of advisor about multi-agent based on behavior and application in RoboCup[J].Robot Technique and Application,2002,15(2):36-39.
  • 6Cheng X Y,et al.Reinforcement learning in simulation RoboCup soccer[C].Proceeding of 2004 International Conference on Machine Learning and Cybernetics,Shanghai,P.R.C,Aug,2004.
  • 7Jennings N R.On agent-based software engineering[J].Artificial Intelligence,2000,117(2):277-296.
  • 8杨煜普,李晓萌,许晓鸣.多智能体协作技术综述[J].信息与控制,2001,30(4):337-342. 被引量:28
  • 9彭刚,黄心汉.基于Agent的遥操作机器人控制器研究[J].控制与决策,2003,18(1):40-44. 被引量:6

共引文献5

同被引文献57

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部