期刊文献+

基于知识深度置信网络的加工粗糙度预测 被引量:7

Machining Roughness Prediction Based on Knowledge-based Deep Belief Network
原文传递
导出
摘要 深度神经网络是一种具有复杂结构和多个非线性处理单元的模型,目前也已逐步被应用在工业生产过程中。但由于神经网络不可解释,不可控制的"黑箱"问题,以及海量的数据需求问题,使得深度学习在工业领域的应用仍有巨大的障碍。提出一种新的深度神经网络模型:知识深度置信网络(Knowledge-based deep belief network,KBDBN)。这种逻辑符号语言与深度神经网络的结合,不仅使得模型具有良好的模式识别性能,还可自适应地确定网络模型并具有可解释和可视化特性。进一步提出基于KBDBN的工件表面粗糙度加工过程的预测模型,实现了精确预测且有效地提取了制造过程的关键知识。试验结果证明:相较于传统机器学习器,KBDBN的网络性能更加优越,具有可解释性,可应用性更强。创新性的将符号规则与深度学习相结合并建立加工粗糙度预测模型,可以在精准预测的前提下提取工艺知识,指导加工工艺优化。 Deep neural network(DNN)is a complex structure and multiple nonlinear processing unit models,and has been gradually applied in industrial production processes.Due to the unexplained of"black box"problem,and the huge data demand problem,however,there are still huge obstacles to the application of DNNs in industrial fields.A new DNN model,knowledge-based deep belief network(KBDBN),is proposed.The combination of this logical symbol language and deep neural network not only makes the model have good pattern recognition performance,but also adaptively determines the network model and has interpretable and visual characteristics.Furthermore,the prediction model of workpiece surface roughness processing based on KBDBN is proposed,which realizes accurate prediction and effectively extracts the key knowledge of the manufacturing process.Experimental results show that compared with the traditional machine learner,KBDBN has better network performance,model interpretability and more applicability.Combines symbolic rules with deep learning and establishes a processing roughness prediction model,which can extract process knowledge and guide process optimization under the premise of accurate prediction.
作者 刘国梁 余建波 LIU Guoliang;YU Jianbo(School of Mechanical Engineering,Tongji University,Shanghai 201804)
出处 《机械工程学报》 EI CAS CSCD 北大核心 2019年第20期94-106,共13页 Journal of Mechanical Engineering
基金 国家自然科学基金(51375290,71777173) 中央高校基本科研业务 上海科委创新科技行动计划(17511109204)资助项目
关键词 表面粗糙度 深度学习 深度置信网络 知识发现 模式识别 surface roughness deep learning deep belief network knowledge discovery pattern recognition
  • 相关文献

参考文献7

二级参考文献49

  • 1陈果.基于神经网络和D-S证据理论的发动机磨损故障融合诊断[J].航空动力学报,2005,20(2):303-308. 被引量:15
  • 2伍奎,李润方,刘景浩.智能化系统的知识表达与推理机制[J].机械工程学报,2005,41(5):98-103. 被引量:19
  • 3SUN Yan-jing ZHANG Shen MIAO Chang-xin LI Jing-meng.Improved BP Neural Network for Transformer Fault Diagnosis[J].Journal of China University of Mining and Technology,2007,17(1):138-142. 被引量:42
  • 4袁胜发,褚福磊,何永勇.基于网格支持矢量机的涡轮泵多故障诊断[J].机械工程学报,2007,43(4):152-158. 被引量:9
  • 5Gallant S I. Connectional expert systems [J]. Communications of the ACM, 1988, 31(2):152-169.
  • 6Saito K, Nakano R. Medical diagnostic expert system based on PDP model [C]//Proceedings of the IEEE Inter national Conference on Neural Networks. New York: IEEE Press, 1988: 255-262.
  • 7Fu L M. Rule learning by searching on adapts nets [C]// Proceedings of the 9th National Conference on Arificial Intelligence. Anaheim, CA: AAAI Press, 1991: 590-595.
  • 8Nguyen H S, Skowron A. Quantization of real values attributes, rough set and Boolean reasoning approaches [CJ//Proceeding of the 2nd Joint Annual Conference on Information Science. Wrightsville Beach, NC: 1995: 34-37.
  • 9Kantardzic M. Data mining concepts, models, methods, and algorithms [M]. New York: IEEE Press, 2002.
  • 10Pawlak Z. Rough set [J]. International Journal of Information and Computer Science. 1982, 11(5):341-356.

共引文献232

同被引文献55

引证文献7

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部