期刊文献+

基于深度学习图像处理的肺部造影检测研究

Detection of pulmonary angiography based on deep learning image processing
原文传递
导出
摘要 深度学习算法由于善于处理复杂多变的信号数据,在各个行业的实际生产中得到了广泛应用,且其潜力巨大。在图像处理领域,深度学习中的卷积神经网络解决了诸多机器视觉上的难题。在医学图像处理领域,针对其分辨率低,人眼容易误判等问题,为达到辅助医务工作者看清图像、识别病变区域的目的,从神经网络的结构优化、训练方案和预测能力三个方面进行探讨,训练出了专用的卷积神经网络用来判断病变区域。并在肺部医学图像上得到了准确的判断结果,初步证实了卷积神经网络在医学图像领域的实用性和可靠性。 Deep learning algorithm has been widely used in the actual production of various industries because it is good at dealing with complex and changeable signal data,and its potential is huge.In the field of image processing,the convolutional neural network in deep learning solves many difficult problems in machine vision.In the field of medical image processing,aiming at the problems of low resolution and easy misjudgement of human eyes,in order to help medical workers to see the image clearly and identify the lesion area,the structure optimization,training scheme and prediction ability of neural network are discussed,and a special convolutional neural network is trained to judge the lesion area,and obtain it from the lung medical image.Accurate judgment results are obtained,which preliminarily prove the practicability and reliability of convolution neural network in the field of medical images.
作者 李维嘉 陈爽 张雷 吴正灏 LI Weijia;CHEN Shuang;ZHANG Lei;WU Zhenghao(Huashan Hospital Affiliated to Fudan University,Shanghai 200040,China)
出处 《自动化与仪器仪表》 2019年第12期102-104,109,共4页 Automation & Instrumentation
基金 江西省科技计划项目一般项目(No.20171BBE50092)
关键词 深度学习 神经网络 细粒度分类 医学图像 deep learning neural network fine-grained classification medical image
  • 相关文献

参考文献18

二级参考文献317

  • 1石平,雷增杰,蓝宗富,朱世杰.如何快速有效地获取网上病理学图像资源[J].西北医学教育,2007,15(2):219-221. 被引量:4
  • 2史忠值.神经网络[M].北京:高等教育出版社,2009.
  • 3Moreno M A, Usalla J. A New Balanced Harmonic Load Flow Including Nonlinear Loads Modeled with RBF Networks[J]. IEEE Trans. Power Delivery, 2004,19 (2) : 686 - 693.
  • 4李彦宏.2012百度年会主题报告:相信技术的力量[R].北京:百度,2013.
  • 5KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet classification with deep convolutional neural networks[C]∥Advances in Neural Information Processing Systems.Red Hook,NY:Curran Associates,2012:1097-1105.
  • 6DAHL G E,YU D,DENG L,et al.Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition[J].Audio,Speech,and Language Processing,IEEE Transactions on,2012,20(1):30-42.
  • 7ZEN H,SENIOR A,SCHUSTER M.Statistical parametric speech synthesis using deep neural networks[C]∥Acoustics,Speech and Signal Processing(ICASSP),20131EEE International Conference on.Piscataway,NJ:IEEE,2013:7962-7966.
  • 8BAHDANAU D,CHO K,BENGIO Y.Neural machine translation by jointly learning to align and translate[J].CoRR,2014:abs/1409.0473.
  • 9ZEILER M D,FERGUS R.Visualizing and understanding convolutional neural networks[J].CoRR,2013:abs/1311.2901.
  • 10SERMANET P,EIGEN D,ZHANG X,et al.Overfeat:integrated recognition,localization and detection using convolutional networks[J].CoRR,2013:abs/1312.6229.

共引文献823

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部