期刊文献+

基于云计算的高速公路信息管理系统SaaS层数据自动隔离方法研究 被引量:2

Research on automatic data isolation method of expressway information management system SaaS layer based on cloud computing
原文传递
导出
摘要 为了提高高速公路的信息化管理能力,提出基于云计算的高速公路信息管理系统SaaS层数据自动隔离方法。构建高速公路信息管理系统SaaS层数据结构模型,采用相关性统计分析方法进行高速公路信息管理系统SaaS层数据的关联规则特征提取,在云计算环境下进行高速公路信息管理系统SaaS层数据的信息融合处理,采用随机链路检测方法进行高速公路信息管理系统SaaS层数据的冗余数据滤波处理,构建高速公路信息管理系统SaaS层数据模糊聚类模型,结合块匹配方法实现高速公路信息管理系统SaaS层数据的自动聚类处理,对提取的特征量采用多源数据融合方法进行高速公路信息管理系统SaaS层数据的模糊聚类处理,在数据聚类中心挖掘高速公路信息管理系统SaaS层数据的模糊指向性特征量,结合相空间重构方法进行高速公路信息管理系统SaaS层数据的重组,实现高速公路信息管理系统SaaS层数据自动隔离。仿真结果表明,采用该方法进行高速公路信息管理系统SaaS层数据隔离,提高数据的聚类和自动融合能力。 In order to improve the information management ability of expressway,an automatic data isolation method of SaaS layer of highway information management platform based on cloud computing is proposed.Constructmg the SaaS data structure model of the expressway information management platform,the correlation statistical analysis method is used to extract the correlation rule features of the SaaS layer data of the expressway information management platform,and the information fusion processing of the SaaS layer data of the expressway information management platform is conducted under the cloud computing environment.The random link detection method is applied to the redundant data filtering processing of the SaaS layer data of the highway information management platform,and SaSS layer fuzzy clustering model of the high way information manayement platform is constructed.The automatic clustering processing of the SaaS layer data of the expressway information management platform is realized by combining the block matching method,and a multi-source data fusion method is alopted to perform the fuzzy clustering processing of the SaaS layer data of the expressway information management platform,In the data clustering center,the fuzzy directivity feature quantity of the SaaS layer data of the expressway information management platform is excavated,and the integration of the SaaS layer data of the expressway information management platform is carried out in combination with the phase space reconstruction method,so that the data of the SaaS layer of the expressway information management platform is automatically isolated.The simulation results show that the method is used for high-speed male The road information management platform Saas layer data isolation,improves the data clustering and automatic fusion ability.
作者 于群松 王振祥 邵宗翰 YU Qunsong;WANG Zhenxiang;SHAO Zonghan(China Traffic Electrical and Mechanical Engineering Co.,Ltd.Beijing 663000,China;Kunming Unionscience Technology Co.,Ltd.Kunming 650051,China)
出处 《自动化与仪器仪表》 2019年第12期105-109,共5页 Automation & Instrumentation
关键词 云计算 高速公路 SaaS层数据 自动隔离 聚类 cloud computing highway saas layer data automatic isolation clustering
  • 相关文献

参考文献11

二级参考文献63

  • 1Lee D D, Seung H S. Learning the parts of objects by non-nega- tive matrix faetorization[J]. Nature, 1999,401(6755) : 788-791.
  • 2Berry M W, Browne M, Langville A N, et al. Algorithms and ap- plications for approximate non-negative matrix factorization[J].Computational Statistics &Data Analysis, 2007,52 : 155-173.
  • 3Yuan Zhi-jian,Oja E. Projective nonnegative matrix faetorization for image compression and feature extraction[C]//Proceedings of the fourteenth Scandinavian Conference on Image Analysis. 2005 : 333-342.
  • 4Lee D D, Seung H S. Algorithms for non-negative matrix faetori- zation[J]. Advances in Neural Information Processing Systems, 2001,13 : 556-562.
  • 5Yoo J, Choi S. Orthogonal non-negative matrix tri-factorization for co-clustering: multiplicative updates on stiefel manifolds[J]. Information Processing & Management, 2010,46(5) : 559-570.
  • 6Li S Z, Hou Xirrwen, Zhang Hong-jiang, et al.Learning spatially localized, parts-based representation[C] // Proceedings of the /NEE conference on Computer Vision and Pattern Recognition, 2001 : 1-6.
  • 7Li Zhao, Wu Xin-dong,Peng Hong. Non-negative matrix factori- zation on orthogonal subspaee[J]. Pattern Recognition Letters, 2010,31 (9) .. 905-911.
  • 8Bueiu I, Nafornita I. Non-negative matrix factorization methods for face recognition under extreme lighting variations[C]//Pro- eeedings of the International Symposium on Signals, Circuits and Systems. 2009:125-128.
  • 9Yang Zhi-rong, Yuan Zhi-jian, Laaksonen J. Projective nonnega- tire matrix factorization with applications to facial image pro- cessing[J]. Intenational Journal of Pattern Recognition and Ar- tificial Intelligence, 2007,21(8) : 1353-1362.
  • 10周庆逵,陈钊正,陈启美.基于视频的路况能见度检测系统的设计与实现[J].电子测量技术,2009,32(6):72-76. 被引量:10

共引文献154

同被引文献16

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部