期刊文献+

基于多源数据时点匹配的发电功率数据融合方法 被引量:1

Power Data Fusion Method Based on Time-Point Matching of Multi-Source Data
下载PDF
导出
摘要 对电力系统规划、调度、控制的研究往往要依托于系统中各电源发电功率数据,而电力系统实际运行时各厂站很难保证在统一的时间基准下运行,导致多源输出功率数据时间序列存在时点不匹配的情况。针对多源数据时点不匹配的问题,提出基于多源数据时点匹配的多源数据融合方法,首先,确定基准时间序列,建立各电源输出功率时间序列相对于基准时间序列的表达式;其次,确定各电源输出功率时间序时间共同域,构建多源输出功率时点匹配模型;最后,根据模型求解结果修正各电源输出功率时间序列,并融合各电源输出功率数据。实例分析表明,该方法能够准确地融合电力系统发电功率数据,对电力系统规划、调度、控制的研究具有重要意义。 The research on power system planning,scheduling and control often relies on the power data of each power station supply in the system.When the power system is actually running,it is difficult for each plant station to operate under a unified time base,resulting in time series of multi-source output power data do not match.Aiming at the problem of multi-source data point mismatch,this paper proposes a multi-source data fusion method based on multi-source data time point matching.Firstly,the reference time series is determined,and the expressions of each power output power time series relative to the reference time series are established.Secondly,determine the time series common domain of each power output,and construct a multi-source output power point matching model.finally,correct the time series of each power output according to the model solution result,and fuse each power output data.The example analysis shows that the method can accurately integrate the power data of power system,which is of great significance for the research of power system planning,scheduling and control.
作者 肖白 王成龙 董凌 严干贵 王茂春 杨洪志 XIAO Bai;WANG Chenglong;DONG Ling;YAN Gangui;WANG Maochun;YANG Hongzhi(School of Electrical Engineering,Northeast Electric Power University,Jilin132012,Jilin Province,China;State Grid Qinghai Electric Power Company,Xining 810008,Qinghai Province,China)
出处 《分布式能源》 2019年第5期29-34,共6页 Distributed Energy
基金 国家重点研发计划项目(2017YFB0902200) 吉林省产业创新专项基金项目(2019C058-7) 吉林省教育厅科技项目(JJKH20180442KJ) 国家电网公司科技项目(5228001700CW)~~
关键词 多源数据 时点匹配 基准时间序列 时间共同域 数据融合 multi-sourcedata time-pointmatching basetime series time common domain data fusion
  • 相关文献

参考文献16

二级参考文献217

共引文献721

同被引文献18

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部