摘要
随着信息科技技术的迅猛发展以及计算机性能的提高,而生产式对抗网络作为深度学习在人工智能技术方面的一种实现方法得到发展,本文先介绍了人工智能,机器学习,深度学习的关系,而后详细介绍了生成对抗网络架构,原理以及衍生出的改进型的生成对抗网络及未来生成对抗网络研究的热点,通过研究发现,生成对抗网络具有良好的应用价值和研究意义。
With the rapid development of information technology and the improvement of computer performance,production-based antagonism network has been developed as an implementation method of in-depth learning in AI.This paper firstly introduces the relationship among AI,machine learning and in-depth learning,and then makes a detailed description of the structure of Generative Adversarial Networks(GAN),principles,improved GAN and the hot topics of studying GAN in the future.The research shows that GAN is worth studying and will be more valuable.
作者
方鹏飞
Fang Pengfei(Department of Information,Xijing Hospital of Air Force Medical University Xi'an Shaanxi 710032,China)
出处
《陕西工业职业技术学院学报》
2019年第4期28-31,共4页
Journal of Shaanxi Polytechnic Institute
关键词
人工智能
机器学习
深度学习
生成对抗网络
Artificial Intelligence(AI)
Machine Learning
In-depth Learning
Generative Adversarial Networks(GAN)