期刊文献+

大挠度直梁二类混合变量变分原理及其应用 被引量:2

VARIATIONAL PRINCIPLES WITH DUAL MIXED VARIABLE AND APPLICATIONS FOR STRAIGHT BEAMS WITH LARGE DEFLECTION
下载PDF
导出
摘要 本文在功的互等定理的基础上,利用位移和应力作为变分变量的二类混合变量的最小势能原理和最小势作用量原理来求解大挠度直梁变形稳定问题,将所得结果与有限元模拟结果进行对比分析,验证了给出的方法的可行性和计算结果的准确性。给出的方法简单灵活,结果准确,为解决大挠度直梁问题提供了新的解决途径,不仅具有一定的理论意义,而且可以直接应用于实际工程中。 Based on the work reciprocal theorem,the minimum potential energy principle and the principle of the minimum potential action of the dual mixed variable of the displacement and the stress are used to solve the problem of the deformation and the stability of a straight beam with large deflection.The results are compared with the finite element simulation results to verify the feasibility of the proposed method and the accuracy of the calculation results.The method is simple and flexible,and the result is accurate.It provides a new solution to solve the problem of a straight beam with large deflection.It can be directly applied to practical engineering problems.
作者 陈英杰 王超 吕婷婷 崔鹏 CHEN Yingjie;WANG Chao;LU Tingting;CUI Peng(School of Architectural Engineering and Mechanics,Yanshan University,Qinhuangdao 066004,Hebei,China)
出处 《力学与实践》 北大核心 2019年第6期681-687,共7页 Mechanics in Engineering
关键词 功的互等定理 二类混合变量 最小势能原理 最小势作用量原理 大挠度直梁变形稳定 work reciprocal theorem dual mixed variable minimum potential energy principle principle of minimum potential action deformation and stability of straight beam with large deflection
  • 相关文献

参考文献3

二级参考文献12

  • 1李东,The Advances of Applied Mathematics and Mechanics of China 3,1990年
  • 2刘人怀,中国科学.A,1984年,3期,247页
  • 3刘人怀,J Non-Linear Mech,1983年,18卷,5期,409页
  • 4刘人怀,科学通报,1965年,3期,253页
  • 5叶开源,科学通报,1965年,2期,142页
  • 6叶开源,科学通报,1965年,2期,145页
  • 7BettiE. Ⅱ nuovo cimento (Ser. z) [J]. 1872,7,8.
  • 8Love A E H, M A Sc D, F R S. A treatise on the matematical theory of elasticity [M]. Fourth Edition, 1944.
  • 9Timoshenko S P, Goodier JN. Theory of elasticity [M]. Third Edition, McGraw-Hill Book Company, 1970.
  • 10FUNG Y C. Foundation of soild mechanics [M]. Drentice-Hall.Inc. Englewool cliffs, New Jersey, 1965.

共引文献2

同被引文献20

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部