摘要
迁移学习是运用已有知识对不同但相关领域问题进行求解的一种新的机器学习方法,可有效地解决传统机器学习要求训练集和测试集服从独立同分布及需要大量样本进行训练的问题。本文针对迁移学习在预测性维护领域的应用进行了综述,总结了在复杂及变工况条件和小样本条件下基于迁移学习的诊断预测现状,并对迁移学习在预测性维护领域的未来研究方向进行了探讨。
Transfer learning is a new machine learning method that applies the knowledge from related but different domains to target domains.It can effectively solve the problems that traditional machine learning requires training sets and test sets follow the independent and identically distributed(i.i.d.)condition and requires a large number of samples for training.This paper reviews the application of transfer learning in predictive maintenance,summarizes the current situation of diagnosis and prediction based on transfer learning under complex and variable working conditions and small sample conditions,and finally discusses the f ut u re research direction of t ransfer learning in predictive maintenance.
出处
《中国仪器仪表》
2019年第12期64-68,共5页
China Instrumentation
基金
“国家重点研发计划”课题编号:2018YFF0214703资助~~
关键词
迁移学习
变工况
小样本
预测性维护
Transfer learning
Various working condition
Small sample
Predictive maintenance