期刊文献+

迁移学习在机械设备预测性维护领域的应用综述 被引量:6

Summary of Application of Transfer Learning in Predictive Maintenance of Machinery and Equipment
下载PDF
导出
摘要 迁移学习是运用已有知识对不同但相关领域问题进行求解的一种新的机器学习方法,可有效地解决传统机器学习要求训练集和测试集服从独立同分布及需要大量样本进行训练的问题。本文针对迁移学习在预测性维护领域的应用进行了综述,总结了在复杂及变工况条件和小样本条件下基于迁移学习的诊断预测现状,并对迁移学习在预测性维护领域的未来研究方向进行了探讨。 Transfer learning is a new machine learning method that applies the knowledge from related but different domains to target domains.It can effectively solve the problems that traditional machine learning requires training sets and test sets follow the independent and identically distributed(i.i.d.)condition and requires a large number of samples for training.This paper reviews the application of transfer learning in predictive maintenance,summarizes the current situation of diagnosis and prediction based on transfer learning under complex and variable working conditions and small sample conditions,and finally discusses the f ut u re research direction of t ransfer learning in predictive maintenance.
作者 王凯 李元辉
出处 《中国仪器仪表》 2019年第12期64-68,共5页 China Instrumentation
基金 “国家重点研发计划”课题编号:2018YFF0214703资助~~
关键词 迁移学习 变工况 小样本 预测性维护 Transfer learning Various working condition Small sample Predictive maintenance
  • 相关文献

参考文献11

二级参考文献140

  • 1孙自强,陈长征,谷艳玲,刘欢.基于混沌和取样积分技术的大型风电增速箱早期故障诊断[J].振动与冲击,2013,32(9):113-117. 被引量:15
  • 2李友荣,曾法力,吕勇,刘安中.小波包分析在齿轮故障诊断中的应用[J].振动与冲击,2005,24(5):101-103. 被引量:26
  • 3Yin Shirong Chen Guangju Xie Yongle.Wavelet neural network based fault diagnosis in nonlinear analog circuits[J].Journal of Systems Engineering and Electronics,2006,17(3):521-526. 被引量:16
  • 4Ben-David S,Blitzer J,Crammer K,Pereira F.Analysis of representations for domain adaptation.In:Platt JC,Koller D,Singer Y,Roweis ST,eds.Proc.of the Advances in Neural Information Processing Systems 19.Cambridge:MIT Press,2007.137-144.
  • 5Blitzer J,McDonald R,Pereira F.Domain adaptation with structural correspondence learning.In:Jurafsky D,Gaussier E,eds.Proc.of the Int’l Conf.on Empirical Methods in Natural Language Processing.Stroudsburg PA:ACL,2006.120-128.
  • 6Dai WY,Xue GR,Yang Q,Yu Y.Co-Clustering based classification for out-of-domain documents.In:Proc.of the 13th ACM Int’l Conf.on Knowledge Discovery and Data Mining.New York:ACM Press,2007.210-219.[doi:10.1145/1281192.1281218].
  • 7Dai WY,Xue GR,Yang Q,Yu Y.Transferring naive Bayes classifiers for text classification.In:Proc.of the 22nd Conf.on Artificial Intelligence.AAAI Press,2007.540-545.
  • 8Liao XJ,Xue Y,Carin L.Logistic regression with an auxiliary data source.In:Proc.of the 22nd lnt*I Conf.on Machine Learning.San Francisco:Morgan Kaufmann Publishers,2005.505-512.[doi:10.1145/1102351.1102415].
  • 9Xing DK,Dai WY,Xue GR,Yu Y.Bridged refinement for transfer learning.In:Proc.of the Ilth European Conf.on Practice of Knowledge Discovery in Databases.Berlin:Springer-Verlag,2007.324-335.[doi:10.1007/978-3-540-74976-9_31].
  • 10Mahmud MMH.On universal transfer learning.In:Proc.of the 18th Int’l Conf.on Algorithmic Learning Theory.Sendai,2007.135-149.[doi:10,1007/978-3-540-75225-7_14].

共引文献647

同被引文献49

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部