摘要
Chemo-mechanical coupling behavior of materials is a transformation process between mechanical and chemical energy.In this paper,based on the coupled chemo-mechanical constitutive equations and governing equations during isothermal process,the equivalent integral forms of chemo-mechanical coupling governing equations and corresponding finite element procedure are obtained by using Hamilton’s principle.An isoparametric plane element for chemo-mechanical coupling is associated into ABAQUS finite element package through user element subroutine UEL.The numerical examples exhibit that the ionic concentration variation can cause mechanical deformation and mechanical action can produce redistribution of ionic concentration for hydrogels.It is proved that the present developed chemo-mechanical coupling finite element procedure can be utilized to model the coupling behavior of hydrogels effectively.
基金
The financial support from the National Natural Science Foundation of China under grants#11172012,#11472020 is gratefully acknowledged.