期刊文献+

面向深度增强学习的网络数据流优化研究

Research on Network Data Flow Optimization for Deep Reinforcement Learning
下载PDF
导出
摘要 探讨面向分布式深度增强学习框架的网络数据流优化,设计使深度学习训练能容忍无损网络的数据流优化策略。对于参数服务器同步架构,假设计算节点和服务器之间的网络通信会产生丢包,该优化策略需要保证分布式训练在无损网络中的性能。采用理论分析与实验评估相结合的方式来验证所提出策略的性能。 This paper explores network data flow optimization for distributed deep enhancement learning frameworks,and designs deep learning training to tolerate data flow optimization strategies for lossless networks.For the parameter server synchronization architecture,it is assumed that network communication between the compute node and the server will result in packet loss.The optimization strategy of this paper needs to ensure the performance of distributed training in the lossless network.This uses a combination of theoretical analysis and experimental evaluation to verify the performance of the proposed strategy.
作者 何学成 HE Xue-cheng(College of Information and Finance,XuanCheng Vocational&Technical College,XuanCheng 242000,China)
出处 《信阳农林学院学报》 2019年第4期116-118,123,共4页 Journal of Xinyang Agriculture and Forestry University
关键词 度增强学习 数据流优化 分布式训练 收敛 deep reinforcement learning data flow optimization distributed training convergence
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部