摘要
基于Euler-Bernoulli梁模型,考虑科氏力和离心力效应,由Hamilton原理建立加速旋转薄壁圆环的平面内线性运动方程。利用波动法对运动微分方程进行求解分析,计算出薄壁圆环在旋转状态下的固有频率,并与相关文献进行了比较,验证动力学方程的准确性。同时分析角加速度,角速度对薄壁圆环模态特性的影响。研究为加速旋转薄壁圆环提供了线性振动特性的波动计算方法,从波动的角度分析加速旋转薄壁圆环结构固有频率和模态特性,拓宽波动法动力学计算范畴。
Using Hamilton’s principle,the in-plane linear partial differential dynamic equations of a thin ring with rotary acceleration were established on the basis of Euler-Bernoulli beam theory considering effects of Coriolis force and centrifugal one.The wave method was used to solve the differential equations,and natural frequencies of the ring under its rotating state were computed and compared with those published in literature to verify the correctness of these dynamic equations.Effects of rotating angular acceleration and angular velocity on mode characteristics of the thin ring were analyzed.The study results provided the wave method for calculating linear vibration characteristics of a thin ring with rotary acceleration,and widened the scope of dynamic calculation with the wave method.
作者
林杰
黄迪山
LIN Jie;HUANG Dishan(School of Mechatronic Engineering and Automation,Shanghai University,Shanghai 200072,China)
出处
《振动与冲击》
EI
CSCD
北大核心
2019年第23期213-218,229,共7页
Journal of Vibration and Shock
基金
国家自然科学基金(51575330)
关键词
加速旋转
薄壁圆环
模态特性
波动法
rotary acceleration
thin ring
mode characteristics
wave method