摘要
为获得布尔函数的紧凑逻辑表示,进而改善综合所得电路的质量,提出一种混合Reed-Muller和对偶Reed-Muller(RM-DRM)逻辑模型。基于海明距离对立方体集合进行划分来构建函数的混合RM-DRM逻辑表示,并利用对偶原理借助EXORCISM-4工具对混合RM-DRM逻辑进行化简。最后将混合RM-DRM逻辑作为结构表示模型应用于可逆电路综合。实验结果表明,与采用RM逻辑作为表示模型相比,混合RM-DRM逻辑模型的采用可以降低某些函数综合所得可逆电路的量子成本,并且能够降低RevLib库中的134个函数综合所得可逆电路的平均量子成本。
A mixed Reed-Muller and Dual Reed-Muller(RM-DRM)logic model is proposed to achieve a more compact logic representation for a Boolean function and improve the quality of the synthesized circuit.The mixed RM-DRM logic representation for a Boolean function is constructed by using Hamming distance based cube cover partitioning,and is optimized by using EXORCISM-4 tool on the basis of duality principle.Being used as a structural representation model,the mixed RM-DRM logic is applied to reversible circuit synthesis.The experimental results show that compared to the Reed-Muller logic model,the mixed RM-DRM logic model can reduce the quantum cost of the synthesized reversible circuits for some functions,and can reduce the average quantum cost of the synthesized reversible circuits for the 134 functions from RevLib benchmark suite.
作者
卜登立
BU Dengli(School of Electronics and Information Engineering,Jinggangshan University,Ji’an Jiangxi 343009,China)
出处
《太赫兹科学与电子信息学报》
北大核心
2019年第6期1112-1117,共6页
Journal of Terahertz Science and Electronic Information Technology
基金
国家自然科学基金资助项目(61961203,61640412)
江西省教育厅科技计划项目资助项目(GJJ160746)
井冈山大学博士科研启动项目资助项目(JZB1803)