摘要
针对多尺度行人检测精度不够高的问题,提出了一种级联式多尺度行人检测算法,使用矩形卷积核提取行人特征,根据行人轮廓特征设计候选区域宽高比例;并提出自适应损失函数,使网络聚焦于困难样本,有效缓解了长尾效应在训练网络时带来的不利因素,提高了网络泛化能力。实验结果表明:所提算法对于Caltech数据集中的大尺度行人,漏检率比Adapt Faster Rcnn算法降低了1.36%;对于中小尺度行人,漏检率比Adapt Faster Rcnn算法下降8.82%。
Aiming at the problem that precision of multi-scale pedestrian detection algorithm is not high,a multi-scale pedestrian detection algorithm based on cascade convolutional neural network is proposed.The rectangular convolution kernel is used to extract pedestrian features,and the ratio of width to height of proposals are designed according to pedestrian contour features and the self-adaptive loss function is proposed,which makes the network focus on hard samples and effectively alleviate adverse factors brought by the long tail effect in training network and improves the network generalization ability.Compared with Adapt Faster RCNN,the miss rate of the proposed algorithm declines by 1.36%in large-scale pedestrians of Caltech data set and that decreases by 8.82%in small and medium-sized.
作者
张姗
刘艳霞
方建军
ZHANG Shan;LIU Yanxia;FANG Jianjun(Beijing Key Laboratory of Information Service Engineering,Beijing Union University,Beijing 100101,China;College of Urban Rail Transit and Logistics,Beijing Union University,Beijing 100101,China)
出处
《传感器与微系统》
CSCD
2020年第1期42-45,52,共5页
Transducer and Microsystem Technologies
基金
国家自然科学基金资助项目(61602041)
北京联合大学人才强校优选计划项目(BPHR2017CZ07)
教育部天诚汇智科研创新基金资助项目(2018A03017)
北京市教育委员会科研计划基金资助项目(KM201911417007)
关键词
多尺度行人检测
级联卷积神经网络
正样本采集
加权损失函数
multi-scale pedestrian detection
cascade convolutional neural network
positive sample collection
weighted-loss function