期刊文献+

级联式多尺度行人检测算法研究 被引量:1

Study on multi-scale pedestrian detection algorithm based on cascade convolution network
下载PDF
导出
摘要 针对多尺度行人检测精度不够高的问题,提出了一种级联式多尺度行人检测算法,使用矩形卷积核提取行人特征,根据行人轮廓特征设计候选区域宽高比例;并提出自适应损失函数,使网络聚焦于困难样本,有效缓解了长尾效应在训练网络时带来的不利因素,提高了网络泛化能力。实验结果表明:所提算法对于Caltech数据集中的大尺度行人,漏检率比Adapt Faster Rcnn算法降低了1.36%;对于中小尺度行人,漏检率比Adapt Faster Rcnn算法下降8.82%。 Aiming at the problem that precision of multi-scale pedestrian detection algorithm is not high,a multi-scale pedestrian detection algorithm based on cascade convolutional neural network is proposed.The rectangular convolution kernel is used to extract pedestrian features,and the ratio of width to height of proposals are designed according to pedestrian contour features and the self-adaptive loss function is proposed,which makes the network focus on hard samples and effectively alleviate adverse factors brought by the long tail effect in training network and improves the network generalization ability.Compared with Adapt Faster RCNN,the miss rate of the proposed algorithm declines by 1.36%in large-scale pedestrians of Caltech data set and that decreases by 8.82%in small and medium-sized.
作者 张姗 刘艳霞 方建军 ZHANG Shan;LIU Yanxia;FANG Jianjun(Beijing Key Laboratory of Information Service Engineering,Beijing Union University,Beijing 100101,China;College of Urban Rail Transit and Logistics,Beijing Union University,Beijing 100101,China)
出处 《传感器与微系统》 CSCD 2020年第1期42-45,52,共5页 Transducer and Microsystem Technologies
基金 国家自然科学基金资助项目(61602041) 北京联合大学人才强校优选计划项目(BPHR2017CZ07) 教育部天诚汇智科研创新基金资助项目(2018A03017) 北京市教育委员会科研计划基金资助项目(KM201911417007)
关键词 多尺度行人检测 级联卷积神经网络 正样本采集 加权损失函数 multi-scale pedestrian detection cascade convolutional neural network positive sample collection weighted-loss function
  • 相关文献

参考文献3

二级参考文献24

  • 1李刚,邱尚斌,林凌,曾锐利.基于背景差法和帧间差法的运动目标检测方法[J].仪器仪表学报,2006,27(8):961-964. 被引量:111
  • 2Huang Chengliang, Liao Zaiyi, Zhao Lian. Synergism of INS and PDR in self-contained pedestrian tracking with a miniature sensor module [ J ]. IEEE Sensors Journal ,2010,10 (8) : 1349 -1359.
  • 3Chen Wei, Fu Zhongqian, Chen Ruizhi, et. al. An integrated GPS and multi-sensor pedestrian positioning system for 3 D urban navi- gation [ C ]//Urban Remote Sensing Joint Event,2009 : 1 -6.
  • 4Sun Zuolei, Mao Xuchu, Tian Weifeng, et al. Activity classifica- tion and dead reckoning for pedestrian navigation with wearable sensors [ J ]. Measurement Science and Techology, 2009,20 : 1 - 10.
  • 5Widyawan W, Klepal Martin, Beauregard St'ephane. A backtra- cking particle filter tor fusing buihting plans with PDR displace- men! eslimates[ C ]//Proeeedings of the 5th Workshop on Positio- ning, Na:'igati:m and C(mm:unieatinn, Hauno','er, 2008 : 207 - 219.
  • 6Jiminez A R ,Seco F, Prieto C, et al. A comparison of pedestrian dead-reckoning algorithms using a low-eost MEMS IMU [ C]//6th 1EEE International Symposium on Intelligent Signal Processing, Budapest ,2009:37 -42.
  • 7Antonio Ram6n Jim(mez Ruiz,Fernamto Seco Granja,Jo Carlos Prieto Honorato, et a. Aecurate pederian indtvor navigation by tightly coupling tixt-mounted IMU and RFID measurements[ J ]. IEEE Transactions on lnstnHnentation anti Measurement,2012, 61(1) :178 -189.
  • 8Liu ttui, Darabi ttoushang, Pat Banerjee,et al. Survey of wireless indoor positioning techniques and systems[J]. IEEE Transac- tions on Systems, Man, and CybemeticsIPart C: ApplicationsAgents ,2009,3 ( 1 ) :35 -42.
  • 9Ratal Feliz, Eduardo Zalama, Jaime G6mez Garcia-Bermejo. Pe- destrian tracking using inertial sensors [ J ]. Journal of Physical Agents ,2009,3 ( 1 ) :35 -42.
  • 10G6rard Lachapel|e. Pedestrian navigation with high sensitivity GPS Receivers mid MEMS[ J ]. Personal and Ubiquitous Compu- ting ,2007,11:481 -488.

共引文献22

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部