期刊文献+

分数阶微谐振器动力系统的混沌运动分析 被引量:1

Chaotic Motion Analysis of Fractional Order Microresonator Dynamic System
下载PDF
导出
摘要 相比于整数阶微谐振器,分数阶微谐振器能更准确模拟微谐振器系统。利用分数阶微分及其理论,提出分数阶微谐振器系统模型,并通过预估-校正法对系统动力学方程进行数值分析。在分数阶微谐振器中,存在两项分数阶次,p 1为反映系统材料粘弹性特性的微分项阶次,p 2为反映系统内部热阻尼的阻尼项阶次。研究表明:p 1的变化是导致系统混沌现象产生的主要因素;随着p 1的变化,系统以倍周期分岔和阵发性突变的方式进入到混沌运动状态。 Compared to integer-order microresonators,fractional-order microresonators can more accurately simulate micro-resonator systems.Based on the fractional-order differential and its theory,a fractional-order microresonator system model was proposed,and the system dynamics equation was numerically analyzed by the predictor-correction method.In the fractional-order microresonator,there are two fractional orders,p 1 is the differential term order reflecting the viscoelastic properties of the system material,and p 2 is the damping term order reflecting the internal thermal damping of the system.The research shows that the change of p 1 is the main factor leading to the chaotic phenomenon of the system.With the change of p 1,the system enters the chaotic motion state by means of double-cycle bifurcation and paroxysmal mutation.
作者 席涛 谢进 孙建华 魏巍 XI Tao;XIE Jin;SUN Jian-hua;WEI Wei(School of Mechanical Engineering,Southwest Jiaotong University,Chengdu 610031,China)
出处 《仪表技术与传感器》 CSCD 北大核心 2019年第11期87-90,94,共5页 Instrument Technique and Sensor
基金 国家自然科学基金项目(51575457)
关键词 分数阶 微谐振器 材料粘弹性 热阻尼 混沌运动 fractional order microresonator material viscoelastic thermal damping chaotic motion
  • 相关文献

参考文献2

二级参考文献33

  • 1Lyshevski S E 2001 MEMS and NEMS: Systems, Devices, and Structures (Boca Raton: CRC Press).
  • 2Lyshevski S E 2003 Energy Conversion Manage 44 667.
  • 3Zhu G, Levine J, Praly L and Peter Y A 2006 J Microelectromech. Syst. 15 1165.
  • 4Xie H and Fedder G 2002 Sens. Actuat. A 95 212.
  • 5Mestrom RM C, Fey R H B, van Beek J T M, Phan K L and Nijmeijer H 2007 Sens. Actuat. A 142 306.
  • 6Younis M I and Nayfeh A H 2003 Nonlinear Dyn. 31 91.
  • 7Braghin F, Resta F, Leo E and Spinola G 2007 Sens. Actuat. A 134 98.
  • 8Wang Y C, Adams S G, Thorp J S, MacDonald N C, Hartwell P, Bertsch F, et al. 1998 IEEE Trans. Circ. Syst. I 45 1013.
  • 9De S K and Aluru N R 2006 J. Microelectromech. Syst. 15 355.
  • 10Luo A and Wang F Y 2002 Commun. Nonlinear Sci. Numet. Simul. 7 31.

共引文献6

同被引文献13

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部