期刊文献+

基于飞行时间的人体颈腰部生理曲线测量及数据处理 被引量:2

Measurement anddata processing of human neck and waist physiological curve based on time-of-flight
下载PDF
导出
摘要 设计一款人体颈腰部生理曲线测量装置并对采集到的生理曲线数据进行分析。数据采集装置主要是基于飞行时间(time-of-flight,TOF)测距原理,分为曲线测量装置、数据采集装置、计算机曲线拟合等三个模块。数据分析部分包括基于SPSS 22平台的单因素分析、回归分析,基于Python的K近邻算法分类识别。对受试者的身高、体重、年龄和矢状面垂直距离(SVA)做Pearson相关性分析,对性别和SVA做t检验。对身高、体重、年龄和矢状面垂直距离(SVA)做回归分析。选身高、体重、年龄和矢状面垂直距离(SVA)作为参考指标,将年龄作为标记对象(青少年、成人、老年人)对曲线做K近邻算法分类处理。身高、体重、年龄和矢状面垂直距离(SVA)具有相关性(P<0.05);性别和SVA值不相关(P>0.05)。用K近邻算法可以较好对曲线做分类,识别准确率为74.93%。 To design a device for measuring the physiological curve of human neck,waist and analyze the collected physiological curve data.Data acquisition device was mainly based on the principle of time-of-flight(TOF)flight time ranging.It was divided into three modules:curve measurement device,data acquisition device and computer curve fitting module.The data analysis part was divided into single factor analysis based on SPSS 22 platform,regression analysis,K-nearest neighbor algorithm(KNN)classification and recognition based on python.Pearson correlation analysis was performed for height,weight,age and SVA,and T test for gender and SVA.Regression analysis was made on height,weight,age and sagittal vertical axis(SVA).Height,weight,age and SVA were selected as reference indexes.Age was used as marker objects(adolescents,adults and the elderly)to classify the curve by KNN.Height、weight、age and SVA were correlated(P<0.05),while gender and SVA were not correlated(P>0.05).KNN can be used to classify curves,and the recognition accuracy is 74.93%.
作者 孙琦 严荣国 江容安 刘亚萍 SUN Qi;YAN Rongguo;JIANG Rongan;LIU Yaping(School of Medical Instrument and Food Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China;Department of Rehabilitation Medicine,Yangpu District Central Hospital,Shanghai 200082)
出处 《生物医学工程研究》 2019年第4期461-465,共5页 Journal Of Biomedical Engineering Research
关键词 颈腰椎曲线 飞行时间测距 单因素分析 回归分析 K近邻算法 Curve of neck and waist Time-of-flight laser ranging Single factor analysis Regression analysis K-nearest neighbor algorithm
  • 相关文献

参考文献6

二级参考文献47

  • 1Chou KC. Review: prediction of protein structural classes and subcellular locations[ J]. Curr. Protein Peptide Sci, 2000,1 : 171-208.
  • 2Murphy lqF, Boland MV, Velliste M. Towards a systematics for protein subcenular location: quantitative description of protein location patterns and automated analysis of fluorescence microscope images[J]. Proc. Int. Conf. Intell. Syst. Mol. Biol, 2000,8:251 -259.
  • 3Nakai K. Protein sorting signals and prediction of subcelluar localization[J]. Adv. Protein Chem, 2000,54 : 277 - 344.
  • 4Nakashima H, Nishikawa K. Discrimination of intracellular and cxtracelluar proteins using amino acid compositon and residue-pair frequencies[J]. J. Mol. Biol, 1994,238:54 - 61.
  • 5Ying Huang, Yanda Li. Prediction of protein subcellular locations using fuzzy κ-NN method[J]. Bioinformatics, 2004,20 : 121 - 128.
  • 6Reinhardt A, Hubbard T. Using neural networks for prediction of the subcellular location of proteins[J]. Nucleic Acids Res,1998,26 :2230 - 2236.
  • 7Lio P, Vannucci M. Wavelet change-point prediction of transmembrane proteins[ J]. Bioinformatics, 2000,16 : 376 - 382.
  • 8Hirokawa T, Boon-Chieng S, Shigeki M. SOSUI: classification and secondary structure prediction system for membrane proteins[J].Bioinformatics, 1998,14 : 378 - 379.
  • 9Keller JM, Gray MR, Givens JA. A fuzzy k-nearest neighbor algorithm[ J]. IEEE Trans. Syst, Man Cybern, 1985,15:580 - 585.
  • 10Jones, DT. Protein Secondary Structure Predietion Based on Position-specific Scoring Matrices[J]. J. Mol, Biol, 1999,292 : 195 - 202.

共引文献31

同被引文献24

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部