期刊文献+

二维逐步正交匹配追踪算法 被引量:3

2D Stagewise Orthogonal Matching Pursuit
下载PDF
导出
摘要 在图像等二维信号的应用与处理上,常规压缩感知理论框架存在重构算法效果差、图像块效应明显、对噪声敏感等问题。针对这些问题,根据现有二维观测模型和二维重构算法设计思想,可以设计一种新的重构算法:二维逐步正交匹配追踪算法。该算法借鉴了相关一维重构算法的设计思想,通过每次迭代选取符合阈值条件的多列原子进而正交化处理的步骤,提升了重构效率,改善了恢复图像质量。理论分析和实验结果表明,提出的算法在重构时间得到控制的情况下,得到的图像信噪比有较大提升,超越了现有典型的二维重构算法。 Traditionally,compressed sensing has large problems in applying to 2D signal,such as image,leading to poor quality and block effect of output image with wasted flowchart.Based on a few recovery programs designed after 2D Measurement Model(2DMM),a new algorithm is proposed named 2D Stagewise Orthogonal Matching Pursuit(2D-StOMP).Learned from the ideas of 2D-OMP,the new algorithm matches atoms with the same weight in one step,so it can cluster larger and more precise dictionary within the same iteration.Theoretical calculation,as well as simulation result,approves that,the new algorithm deals better than state-of-art methods in PSNR without running more time.
作者 邵然 沈军 SHAO Ran;SHEN Jun(College of Information and Communication Engineering,Harbin Engineering University,Harbin 150001,China;Shanghai Radio Equipment Research Institute,Shanghai 200090,China)
出处 《计算机工程与应用》 CSCD 北大核心 2020年第1期209-215,共7页 Computer Engineering and Applications
基金 中央高校基本科研业务费(No.HEUCFP201808)
关键词 压缩感知 二维重构算法 二维逐步正交匹配追踪重构算法(2D-StOMP) compressed sensing 2D reconstruction algorithm 2D Stagewise Orthogonal Matching Pursuit(2D-StOMP)
  • 相关文献

参考文献4

二级参考文献30

  • 1Candes E,Romberg J,Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete fre- quency information. IEEE Trans Inform Theory,2006,52: 489-509.
  • 2Candes E,Tao T. Near optimal signal recovery from random projections: universal encoding strategies. IEEE Trans Inform Theory,2006,52: 5406-5425.
  • 3Donoho D. Compressed sensing. IEEE Trans Inform Theory,2006,52: 1289-1306.
  • 4Candes E,Tao T. Decoding by linear programming. IEEE Trans Inform Theory,2005,51: 4203-4215.
  • 5Tropp J,Gilbert A. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inform Theory,2007,53: 4655-4666.
  • 6Pope G. Compressive sensing: a summary of reconstruction algorithms. Master thesis. Zrich: Eidgenssische Technische Hochschule. 2009.
  • 7Rivenson Y,Stern A. Compressed imaging with a separable sensing operator. IEEE Signal Process Lett,2009,16: 449-452.
  • 8Ghaffari A,Babaie-Zadeh M,Jutten C. Sparse decomposition of two dimensional signals. In: IEEE International Conference on Acoustics,Speech and Signal Processing,ICASSP,Taipei,2009. 3157-3160.
  • 9Liu Y,Wu M Y,Wu S J. Fast OMP algorithm for 2D angle estimation in MIMO radar. IET Electronics Lett,2010,46: 444-445.
  • 10Baraniuk R G.Compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.

共引文献26

同被引文献36

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部