期刊文献+

一种基于粒子滤波的双极化雷达检测前跟踪算法

The algorithm of track before detect using particle filter for dual-polarized radar
下载PDF
导出
摘要 针对雷达在低信噪比(signal to noise ratio,SNR)条件下对运动目标的检测和跟踪难题,提出了一种基于粒子滤波(particle filter,PF)的双极化雷达运动目标检测前跟踪(track before detect,TBD)算法,又称联合粒子滤波检测前跟踪(joint particle filter-track before detect,JPF-TBD)方法.该算法借鉴传统的TBD算法处理框架,以经典PF算法为基础,使用双通道幅度相位似然比函数计算粒子权值,并实现了完整的PF过程.与同类研究相比,所提算法能够充分利用双极化雷达各通道幅度和相位信息,进一步扩展了PF算法的应用范围.仿真实验表明:在SNR>10 dB,虚警概率为10-6的情况下所提算法对目标的检测概率大于0.8. On the condition of dual-polarized mode,the radar may suffer from the noise and the clutter,and it poses a significant challenge to detecting and tracking weak targets.To address this problem,a novel joint particle filter algorithm,which can handle dual-polarized data of weak target,is proposed.The algorithm is prepared from the framework of particle filter track before detect(PF-TBD)filter,and it is implemented by firstly adopting a dual-polarized likelihood ratio function(LRF),which can greatly improve the performance of PF-TBD.Compared with classic method,the new approach combines the dual-polarized data with PF-TBD,which provides a new way to such problems,avoiding the loss tracking of the weak target with lower signal to noise ratio(SNR).When SNR>10 dB and the false alarm probability is less than 10-6,the target detection probability can be above 0.8.
作者 李超 李永祯 王雪松 LI Chao;LI Yongzhen;WANG Xuesong(State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System,National University of Defense Technology,Changsha 410073,China)
出处 《电波科学学报》 EI CSCD 北大核心 2019年第6期723-731,共9页 Chinese Journal of Radio Science
基金 国家自然科学基金(61490690)
关键词 极化雷达 运动目标 检测前跟踪(TBD) 粒子滤波(PF) 检测概率 polarimetric radar moving target track before detect particle filter detection probability
  • 相关文献

参考文献2

二级参考文献17

  • 1Bruno M G. Bayesian methods for rnultiaspect target tracking [J]. IEEE Transactins on Signal Processing, 2004, 52 (7) : 1848-1861.
  • 2Caron F, Davy M. Particle filtering for mullisensor data fusion with switching observation models: application to land vehiclepositioning[ J]. IEEE Transactions on Signal Processing, 2007, 55(4) :2703 -2719.
  • 3Boers Y, Driessen J N. Interacting multiple model particle filter [ J] .IEE Proceedings of Radar Sonar and Navigation,2003,150 (5) :344 -349.
  • 4Jepson A D, Fleet D J. Robust online appearance models for visual tracking [ J ]. IEEE Transactions on Pattern Analysis and Machine lnteUigence,2003,25(10) : 1296 -1311.
  • 5Kirubarajaa T,Bar-Salom Y. Probabilistic data assodafition tech-niques for target tracking in clutter [ J]. Proceedings of IEEE, 2034,92(3) :536 -557.
  • 6Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm[ J]. Journal of Roy-al Statistics Society, 1977,39(1) : 1 -38.
  • 7Li X R, Jilkov V P. Survey of maneuvering target tracking.Part I: Dynamic model [ J ]. IEEE Transactions on Aerospace and Electronic System, 2003,39(4) : 1333 -1364.
  • 8Blair W D,Watson G A. Krubarajan T. Benchmark for radar resource allocation and tracking in the presence of ECM[J]. IEEE. Transactions on Aerospace and Electronic Syste~n, 1998, 34(5) : 1015 -1022.
  • 9Hue C, Lecader J P, Perez P. Tracking multiple objects with particle fdtering [ J ]. IEEE. Transactions on Aerospace and Electronic System,2002,38(3) :791 -812.
  • 10Maccormick J, Blake A. A Probabilistic exclusion principle for tracking multiple objects[ J]. International Journal of Con3ptlter Vision,2000,39(1) :57 -71.

共引文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部