摘要
目前提取监测数据中异常数据的方法研究比较多,而对桥梁海量监测数据的特征数据提取的方法研究比较少。通过对原始监测数据进行一系列预处理和归一化后,将监测数据转化为犹豫模糊决策矩阵,并基于犹豫模糊集对桥梁最佳监测数据进行提取,可从每个时间周期内提取出一个最佳的监测数据,从而消除了对桥梁安全监测意义不大的数据,减少数据量,提高桥梁安全监测评估的效率。
At present,there are many methods to extract abnormal data from monitoring data,but few methods to extract characteristic data from massive monitoring data of bridges.After a series of pretreatment and dimensionless normalization of the original monitoring data,the monitoring data are transformed into a hesitant fuzzy decision matrix.Based on the hesitant fuzzy set entropy measure,the extraction algorithm of the best monitoring data for bridges can extract the best monitoring data from each time period,thus eliminating the safety of bridges.Reducing the amount of data and improving the efficiency and benefit of bridge safety monitoring and evaluation.
作者
颜毅
吴章勇
YAN Yi;WU Zhangyong(Chongqing Jiaotong University,Chongqing,400074,China;Shaanxi Hairong Engineering Test&Testing Co.,LTD.Chongqing Branch,Chongqing,400074,China)
出处
《公路工程》
北大核心
2019年第6期9-14,76,共7页
Highway Engineering
基金
国家杰出青年科学基金项目(51425801)
关键词
桥梁安全监测
数据预处理
犹豫模糊集
熵测度
最佳监测数据
bridge safety monitoring
data preprocessing
hesitant fuzzy entropy
entropy measure
best monitoring data