期刊文献+

Nitrogen partitioning and microbial protein synthesis in lactating dairy cows with different phenotypic residual feed intake 被引量:5

Nitrogen partitioning and microbial protein synthesis in lactating dairy cows with different phenotypic residual feed intake
下载PDF
导出
摘要 Background: Residual feed intake(RFI) is an inheritable measure of feed efficiency that is independent on level of production. However, physiological and metabolic mechanisms underlying divergent RFI are not fully elucidated.This study was conducted to investigate dietary nitrogen(N) partitioning and microbial protein synthesis in lactating dairy cows divergent in phenotypic RFI.Results: Thirty Holstein dairy cows(milk yield = 35.3 ± 4.71 kg/d;milk protein yield = 1.18 ± 0.13 kg/d;mean ± standard deviation) were selected for the experiment to derive RFI. After the RFI measurement period of 50 d, the 10 lowest RFI cows and 8 highest RFI cows were selected. The low RFI cows had lower dry matter intake(DMI, P < 0.05) than the high RFI cows, but they produced similar energy-corrected milk. The ratios of milk to DMI(1.41 vs. 1.24, P < 0.01) and energy-corrected milk to DMI(1.48 vs. 1.36, P < 0.01) were greater in low RFI cows than those in the high RFI cows. The low RFI cows had lower milk urea nitrogen than that in the high RFI cows(P = 0.05). Apparent digestibility of nutrients did not differ between two groups(P > 0.10). Compared with high RFI animals, the low RFI cows had a lower retention of N(5.72 vs. 51.4 g/d, P < 0.05) and a higher partition of feed N to milk N(29.7% vs. 26.5%, P < 0.05).Conclusions: The results suggest that differences in N partition, synthesis of microbial protein, and utilization of metabolizable protein could be part of the mechanisms associated with variance in the RFI. Background: Residual feed intake(RFI) is an inheritable measure of feed efficiency that is independent on level of production. However, physiological and metabolic mechanisms underlying divergent RFI are not fully elucidated.This study was conducted to investigate dietary nitrogen(N) partitioning and microbial protein synthesis in lactating dairy cows divergent in phenotypic RFI.Results: Thirty Holstein dairy cows(milk yield = 35.3 ± 4.71 kg/d; milk protein yield = 1.18 ± 0.13 kg/d; mean ± standard deviation) were selected for the experiment to derive RFI. After the RFI measurement period of 50 d, the 10 lowest RFI cows and 8 highest RFI cows were selected. The low RFI cows had lower dry matter intake(DMI, P < 0.05) than the high RFI cows, but they produced similar energy-corrected milk. The ratios of milk to DMI(1.41 vs. 1.24, P < 0.01) and energy-corrected milk to DMI(1.48 vs. 1.36, P < 0.01) were greater in low RFI cows than those in the high RFI cows. The low RFI cows had lower milk urea nitrogen than that in the high RFI cows(P = 0.05). Apparent digestibility of nutrients did not differ between two groups(P > 0.10). Compared with high RFI animals, the low RFI cows had a lower retention of N(5.72 vs. 51.4 g/d, P < 0.05) and a higher partition of feed N to milk N(29.7% vs. 26.5%, P < 0.05).Conclusions: The results suggest that differences in N partition, synthesis of microbial protein, and utilization of metabolizable protein could be part of the mechanisms associated with variance in the RFI.
出处 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2019年第4期1059-1066,共8页 畜牧与生物技术杂志(英文版)
基金 supported by grants from the National Natural Science Foundation of China(No.31872380) the China Agricultural Research System(Beijing,China No.CARS-36)
关键词 Lactating COWS MICROBIAL protein Nitrogen partitioning RESIDUAL FEED INTAKE Lactating cows Microbial protein Nitrogen partitioning Residual feed intake
  • 相关文献

同被引文献23

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部