摘要
为了实现气象资料缺失下参考作物蒸散量ET 0的高精度预测,以江西南昌、吉安及龙南站1966—2015年每日最高气温T max、最低气温T min、日照时数n、相对湿度RH和2 m高风速u 2作为输入参数,以FAO-56 Penman-Monteith(P-M)公式的计算结果作为对照,建立了6种不同气象要素组合条件下的4种ET 0计算模型,并分别与输入相同数据的经验法计算结果进行了比较.结果表明,在3个站点中,多元自适应回归样条法MARS模型的精度最高,且计算简便,可作为江西省蒸散量模拟的推荐方法.当4种模型的输入数据完整时,模拟精度均达到最高,表明4种模型均可适用于对参考作物蒸散量的模拟;输入数据缺失条件下,各气象要素对智能模型模拟ET 0的影响由大到小按参数排序依次为T max,T min,n,RH,u 2.与传统经验公式相比,4种智能模型的ET 0计算结果精度均优于输入相同数据的经验法.
A highly precise estimate of reference crop evapotranspiration(ET 0)in absence of some meteorological data is on demand.Based on daily maximum and minimum ambient temperatures T max and T min,sunshine hours n,relative humidity,RH,and wind speed at 2 m height,u 2,during 1966—2015 in Nanchang,Ji′an and Longnan meteorological stations in Jiangxi province,four artificial intelligent(AI)models for predicting ET 0 were established in terms of different combinations of six meteorological elements by using FAO-56 Penman-Monteith(P-M)formula as standard.The predicted results were compared with those calculated by empirical method.The results show that the MARS model has the highest accuracy in three stations and its computation procedure is simple.Eventually,it is the recommended method for estimating ET 0 in the province.If the input data are complete,four mo-dels can achieve the best accuracy,indicating all the models are applicable to ET 0 prediction.In absence of some input data,the influence of meteorological elements on ET 0 estimation from the most important to the least important is as follows:T max>T min>n>RH>u 2.Compared with the traditional empirical formulas,the accuracy of four AI models is better for the same input data.
作者
刘小华
魏炳乾
吴立峰
杨坡
LIU Xiaohua;WEI Bingqian;WU Lifeng;YANG Po(State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China,Xi′an University of Technology,Xi′an,Shaanxi 710048,China;National and Provincial Joint Engineering Laboratory for the Hydraulic Engineering Safety and Efficient Utilization of Water Resources of Poyang Lake Basin,Nanchang,Jiangxi 330099,China)
出处
《排灌机械工程学报》
EI
CSCD
北大核心
2020年第1期102-108,共7页
Journal of Drainage and Irrigation Machinery Engineering
基金
陕西水利科技计划项目(2014skj-14)
陕西省教育厅科学研究计划项目(JK0739)
关键词
参考作物蒸散量
日值对比
智能模型
江西省
经验法
reference crop evapotranspiration
daily value contrast
intelligent model
Jiangxi Province
experiential method