期刊文献+

一种婴儿哭声识别优化算法的研究 被引量:2

Research on an Infant Crying Recognition Optimization Algorithm
下载PDF
导出
摘要 针对现有婴儿哭声识别方法在噪声环境下和不同婴儿间鲁棒性不足的问题,提出一种婴儿哭声识别的优化算法。利用子带谱熵法端点确定婴儿哭声信号的有效区间,增强算法在噪声环境下的鲁棒性;从有效哭声信号中提取平滑Mel频率倒谱系数(SMFCC)作为特征参数;基于SMFCC构建婴儿哭声模板,增强算法在不同婴儿间的鲁棒性;使用动态时间规整算法(DTW)计算哭声信号与模板的距离,得到识别结果。实验表明:在具有噪声的婴儿哭声测试集中,哭声识别准确率均达到72%以上,该方案在噪声环境下和不同婴儿个体的哭声识别中表现出较强的鲁棒性。 In order to overcome the shortcomings that the current infant crying recognition algorithms are not robust enough in a noisy environment and among different infants,an optimization algorithm for infant crying recognition is proposed.This method uses the subband spectral entropy method to detect the effective range of infant crying to improve the robustness of algorithm in noisy backgrounds.The smooth Mel frequency cepstrum coefficient(SMFCC)is extracted from the effective crying signals as the characteristic parameters among different infants.The infant crying template is constructed based on the SMFCC parameters to improve the robustness of the algorithm.The dynamic time warping algorithm(DTW)is used to calculate the distance between the crying signal and the template and obtain the recognition result.Experiments show that in the test set in noisy background,the crying recognition accuracy rate is more than 72%,the method shows strong robustness in the noise environment and different infants crying recognition.
作者 林浩文 张正道 张明馨 高超宏 LIN Hao-wen;ZHANG Zheng-dao;ZHANG Ming-xin;GAO Chao-hong(School of Internet of Things Engineering,Jiangnan University,Wuxi 214122,China;Key Laboratory of Advanced Process Control for Light Industry of Ministry of Education,Jiangnan University,Wuxi 214122,China)
出处 《测控技术》 2019年第12期46-51,共6页 Measurement & Control Technology
关键词 婴儿哭声识别 平滑Mel频率倒谱系数 子带谱熵法 基音频率 动态时间规整 infant crying recognition smooth Mel frequency cepstrum coefficient subband spectrum entropy fundamental frequency dynamic time warping
  • 相关文献

参考文献4

二级参考文献23

  • 1章熙春,曹燕,张军,韦岗.语音MFCC特征计算的改进算法[J].数据采集与处理,2005,20(2):161-165. 被引量:6
  • 2林玮,杨莉莉,徐柏龄.基于修正MFCC参数汉语耳语音的话者识别[J].南京大学学报(自然科学版),2006,42(1):54-62. 被引量:23
  • 3郭武,王仁华,戴礼荣.基于基音周期与清浊音信息的梅尔倒谱参数[J].数据采集与处理,2007,22(2):229-233. 被引量:1
  • 4Bimbot F, Bonastre J F, Fredouille C, et al. A tutorial on text-independent speaker verification[J]. EURASIP Journal on Applied Signal Processing, 2004, 4: 430-451.
  • 5Davis S B, Mermelstein P. Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences[J]. IEEE Transactions on Acoustics, Speech Signal Process, 1980, 28(4): 357-366.
  • 6Shannon B J, Paliwal K K. Feature extraction from higher-lag autocorrelation coefficients for robust speech recognition [J]. Speech Communication, 2006, 48 (11):1 458-1 485.
  • 7Skowronski M D, Harris J G. Exploiting independent filter bandwidth of human factor cepstral coefficients in automatic speech recognition [J]. Journal of the Acoustical Society of America, 2004, 116(3): 1 774- 1 780.
  • 8Shannon B J, Paliwal K K. A comparative study of filter bank spacing for speech recognition[C]// Proceedings of the Microelectronic Engineering Research Conference. Brisbane, Australia, 2003:1- 3.
  • 9QuatieriTF.离散时间语音信号处理:原理与应用[M].赵胜辉,刘家康,谢湘,等译.北京:电子工业出版社,2004.
  • 10Paul D. The spectral envelope estimation vocoder[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1981, 29(4): 786-794.

共引文献31

同被引文献3

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部