期刊文献+

融合时序的决策树推荐算法研究

Decision Tree Recommendation Algorithms Integrating Time-Sequence
下载PDF
导出
摘要 提出融合用户画像的多特征属性来提高性能推荐算法,主要创新在于:①融合用户行为的时序,将用户的历史行为按照时间顺序存储;②收集用户对推荐项目的反馈对目标函数采用机器学习来实时优化预测参数;③基于决策树的方法和优化损失函数更新预测参数。通过在Gowalla、Last.fm两个数据集上与采用多个基本推荐算法的结果相比较,该算法有效地优化推荐系统准确性。 Proposes to improve a recommendation algorithm based on time sequence and decision model of users’actions,the main innovations here are as follows:i.integrating the time sequence of user's behavior,storing the user's historical behavior in time sequence;ii.updating the prediction parameters in the repeated interaction with users and objective function by machine learning;iii.predicting parameters based on decision tree and optimizing loss function.Compared with other intelligent algorithms in the dada set of Gowalla and Last.fm,the algorithm can be more accurate.
作者 徐志熹 钱洋 苏扬 XU Zhi-xi;QIAN Yang;SU Yang(Information Technology Department,Sichuan Provincial Library,Chengdu 610015;School of Computer Science and Engineering,University of Electronic Science and Technology of China,Chengdu 611731;School of Foreign Languages,University of Electronic Science and Technology of China,Chengdu 611731)
出处 《现代计算机》 2019年第34期20-23,27,共5页 Modern Computer
基金 四川科技厅项目(No.2017SZ0205) 四川省高校人文社会科学重点研究基地“科技金融与创业金融研究中心”项目(No.M17JR2018-08)
关键词 行为时序 机器学习 决策树 推荐系统 人工智能 Time-Sequence Machine Learning Decision Tree Recommendation System Artificial Intelligence
  • 相关文献

参考文献3

二级参考文献113

  • 1Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217.
  • 2Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201.
  • 3Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186.
  • 4Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999.
  • 5Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362.
  • 6Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html
  • 7Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(6):734-749.
  • 8Resnick P, Varian HR. Recommender systems. Communications of the ACM, 1997,40(3):56-58.
  • 9Balabanovic M, Shoham Y. Fab: Content-Based, collaborative recommendation. Communications of the ACM, 1997,40(3):66-72.
  • 10Schafer JB, Konstan J, Riedl J. Recommender systems in e-commerce. In: Proc. of the 1 st ACM Conf. on Electronic Commerce. New York: ACM Press, 1999. 158-166.

共引文献1166

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部