期刊文献+

面向C-RAN的群稀疏线性预编码

Group sparse linear precoding for C-RAN
下载PDF
导出
摘要 云无线接入网络(cloud radio access network,C-RAN)是一种能够集中处理信号的网络架构。C-RAN能够通过算法动态选择无线电单元(remote radio head,RRH)来调整用户通信速率。而通信速率作为用户服务质量(quality of service,QoS)的关键部分,当参与服务的RRH越多时,用户的通信速率更大且体验更好,但同时所带来的能源损耗越大,因此本文研究通信速率和功率消耗二者之间的权衡关系。提出一种优化算法,将权衡问题建模成一个单目标优化模型,通过权衡系数来协调速率和RRH激活个数之间的矛盾。为了解决l0-范数的非凸问题,本文使用重复加权l1-范数去近似l0-范数,同时使用加权最小均方误差(weighted minimum mean square error,WMMSE)的方法将通信速率从非凸问题转换成一个凸问题,最后使用改进的次梯度法对预编码矩阵进行更新。仿真结果证明该算法减少了时间复杂度,同时达到了与穷举法相近的性能。 Cloud radio access network(C-RAN)is a network architecture that centralized signal processing.C-RAN can dynamically adjust the user communication rate by dynamically selecting remote radio heads(RRHs).Rate performance is a key part of user quality of service(QoS).As the number of RRHs increases,the rate performance can be improved at the expense of higher energy consumption.Therefore,the trade-off between rate performance and power consumption is focused.In this paper,an optimization algorithm is proposed.In this algorithm,the contradiction between the rate maximization and the number of RRHs minimum is coordinated through the trade-off coefficient.To solve the non-convex problem,the re-weighted l1-norm to approximate the l0-norm is used,and the weighted minimum mean square error(WMMSE)method is used to convert the non-convex sum rate express to a convex function.Finally,a modified subgradient method is used to update the precoding matrix.The simulation results show that the method reduces the complexity and achieves near-optimal performance.
作者 丁冠翔 刘之洋 吴虹 赵迎新 ING Guanxiang;LIU Zhiyang;WU Hong;ZHAO Yingxin(College of Electronic Information and Optical Engineering,Nankai University,Tianjin 300350,China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2020年第1期217-222,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(61571244,61871239,61671254)资助课题
关键词 云无线接入网络 用户服务质量 加权最小均方误差 预编码 cloud radio access network(C-RAN) quality of service(QoS) weighted minimum mean square error(WMMSE) precoding
  • 相关文献

参考文献1

二级参考文献7

  • 1周威,金以慧.利用模糊次梯度算法求解拉格朗日松弛对偶问题[J].控制与决策,2004,19(11):1213-1217. 被引量:14
  • 2孙小玲,李端.整数规划[M].北京:科学出版社,2010.
  • 3Ali D, Jean-Philippe P R. An integrated supply chain problem., a nested lagrangian relaxation approach [J] . Annals of Operations Re- search, 2015, 229: 303-323.
  • 4Marshall L F. The Lagrangian Relaxation Method for Solving Integer Programming Problems [J] . Management Science, 2004, 50: 1861-1871.
  • 5Xu Yifan, Li Duan. A nonlinear Lagrangian dual for integer programming [J] . Operations Research Letters, 2002, 30: 401-407.
  • 6Camerini P M, Fratta L, Maffioli F. On improving relaxation methods by modified gradient techniques [J] . Mathematical Programming Study, 1975, 3: 26-34.
  • 7Sherali H D, Ulular O. A primal-dual conjugate subgradient algorithm for specially structured linear and convex programming problems [J]. Applied Mathematies and Optimization, 1989, 20: 193-221.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部