摘要
针对装备故障预测存在有效样本少、模型预测精度低等问题,集成灰色理论和神经网络方法,提出基于灰色神经网络的故障预测组合模型。基于新信息优先原理和重构背景值方法优化灰色GM(1,1)模型的初始值与背景值,利用Levenberg-Marquardt算法改进反向传播神经网络模型;采用组合预测思想,将多方法融合改进灰色模型和神经网络模型,分别构建基于权重分配、基于误差修正和基于结构优化的3种灰色神经网络组合模型。以某雷达发射机的故障预测为例,验证上述方法在故障预测中的有效性。结果表明,灰色神经网络组合模型的预测精度优于单一预测模型,可用于装备的故障预测和预测性维修。
To solve the problems of equipment’s failure prediction,including insufficient effective samples and low accuracy of the prediction model,the grey theory and neural network method are integrated in this study,and the combined models are proposed.On the basis of the new information priority principle and the reconstruction background value method,the initial and background values of the GM(1,1)model are optimized,and the back propagation neural network model is improved by the Levenberg-Marquardt algorithm.By using combined forecasting theorem,the improved grey model and neural network model are integrated with multiple approaches and three combined models are established based on weight allocation,error correction and structural optimization respectively.Selecting the failure prediction of a radar transmitter as an example,the effectiveness of the proposed methods is verified.The results show that compared with the existing prediction model,more accurate failure prediction results can be obtained with the proposed combined models.Therefore,it is helpful for equipment’s failure prediction and predictive maintenance.
作者
黄魁
苏春
HUANG Kui;SU Chun(School of Mechanical Engineering,Southeast University,Nanjing 211189,China)
出处
《系统工程与电子技术》
EI
CSCD
北大核心
2020年第1期238-244,共7页
Systems Engineering and Electronics
基金
国家自然科学基金(71671035)资助课题
关键词
故障预测
灰色模型
神经网络
组合模型
failure prediction
grey model
neural network
combined model