期刊文献+

基于贝叶斯-遗传算法的多值无环CP-nets学习 被引量:1

Learning of multi-valued acyclic CP-nets based on Bayesian-genetic method
下载PDF
导出
摘要 条件偏好网(Conditional Preference networks,CP⁃nets)是描述属性间条件偏好的图模型,多值无环CP⁃nets学习是重要的研究方向之一.区别于传统的CP⁃nets学习方法,提出基于贝叶斯方法和遗传算法的多值无环CP⁃nets学习.在偏好处理上以多值属性的完整偏序关系作为条件偏好,进行相关性关系判定.随后,基于贝叶斯方法,以单一父属性推出多父属性下的相关性关系,进行CP⁃nets结构学习.采用遗传算法在CP⁃nets结构搜索空间中进行搜索,求解最优结构.通过Delink算法进行去环,完成无环CP⁃nets学习.在寿司数据集上验证算法的有效性,实验结果表明,基于贝叶斯⁃遗传算法的CP⁃nets学习算法能够在有限时间内学习得到局部最优无环CP⁃nets. Conditional preference network(CP⁃net)is a graph model describing conditional preferences among attributes.Multi⁃valued acyclic CP⁃nets learning is an important research direction.Different from the traditional CP⁃nets learning method,a multi⁃valued acyclic CP⁃nets learning method based on Bayesian method and genetic algorithm is proposed.In preference processing,the complete partial order relationship of multi⁃valued attributes is used as conditional preferences to determine the correlation relationship.This method uses single parent attribute to deduce the relativity under multi⁃parent attributes and to learn CP⁃nets structure.Genetic algorithm is used to search in the search space of CP⁃nets structure to find the optimal structure.Delink algorithm is used to de⁃loop and complete acyclic CP⁃nets learning.The validity of the algorithm is validated on sushi data set.The experimental results show that the algorithm based on Bayesian⁃genetic algorithm is effective.CP⁃nets learning algorithm can obtain local optimal acyclic CP⁃nets in limited time.
作者 信统昌 刘兆伟 Xin Tongchang;Liu Zhaowei(School of Computer and Control Engineering,Yantai University,Yantai,264005,China)
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第1期74-84,共11页 Journal of Nanjing University(Natural Science)
基金 山东省重点研发计划(2015GSF115009) 国家自然科学基金(61403328,61572419)
关键词 多值属性 贝叶斯方法 遗传算法 无环 CP⁃nets multi⁃valued attributes Bayesian method genetic algorithm acyclic CP⁃nets
  • 相关文献

参考文献6

二级参考文献38

  • 1张志政,邢汉承,王蓁蓁,倪庆剑.一种基于多类型偏好的偏好逻辑[J].软件学报,2007,18(11):2728-2739. 被引量:4
  • 2GROSSI D, LORINI E, SCHWARZENTRUBER F. The ceteris pa- ribus structure of logics of game forms [ J]. Journal of Artificial In- telligence Research, 2015, 53(1): 91-126.
  • 3LIU W, WU C, FENG B, et al. Conditional preference in recom- mender systems [ J]. Expert Systems with Applications, 2015, 42 (2) : 774 -788.
  • 4MLON N. Learning and optimizing with preferences [ C]//ALT 2013: Proceedings of the 24th International Conferenee on Mgorithmie Learn- ing Theory, LNCS 8139. Berlin: Springer-Verlag, 2013:13-21.
  • 5SHI Y, LARSON M, HANJALIC A. Collaborative filtering beyond the user-item matrix: a survey of the state of the art and future chal- lenges [J]. ACM Computer Surveys, 2014, 47(1) : Article No. 3.
  • 6GURUSWAMI M, SUNITHA T. Efficient robust interactive person- alized mobile search engine [J]. International Journal of Computer Trends and Technology, 2015, 19(1): 30-33.
  • 7WANG X, WANG Y. Improving content-based and hybrid music recommendation using deep learning [ C]//MM 14: Proceedings of the 22nd ACM International Conference on Multimedia. New York: ACM, 2014:627-636.
  • 8PROCACCIA A D, SHAH N, ZICK Y. Voting rules as error-correc- ting codes [J]. Artificial Intelligence, 2016, 231:1 -16.
  • 9DE AMO S, DIALLO M S, DIOP C T, et al. Contextual preference mining for user profile construction [ J]. Information Systems, 2015, 49:182 - 199.
  • 10DIMOPOULOS Y, MICHAEL L, ATHIENITOU F. Ceteris paribus preference elicitation with predictive guarantees [ C]// UCAI 09: Proceedings of the 21st International Joint Conference on Artificial Intelligence. San Francisco, CA: Morgan Kaufmann, 2009:1890 - 1895.

共引文献21

同被引文献17

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部