期刊文献+

用于网络安全态势预测的SAGPSO-SVM模型研究 被引量:6

Research on SAGPSO-SVM Model for Network Security Situation Prediction
下载PDF
导出
摘要 网络安全态势预测精度不足,导致主动防御不及时。本文提出一种基于模拟退火与高斯扰动的粒子群算法(SAGPSO)与支持向量机(SVM)结合的预测模型,首先在传统粒子群(PSO)算法基础上引入模拟退火的思想,避免局部极值,对较优个体进行高斯扰动,然后利用该算法的全局收敛性强、收敛速度快和精确度高的特点对SVM参数进行优化,最后运用获取的模型参数进行预测,从而提高预测精度,并将此模型的预测结果与PSO-SVM和SAPSO-SVM预测模型的预测结果进行对比。结果表明,SAGPSO-SVM是一个预测精度高而且能够更加准确的描述网络安全态势变化趋势的预测模型。 The accuracy of the network security status is poorly predicted,resulting in unpredictable active defense.A prediction model based on simulated annealing and Gaussian disturbance particle swarm optimization(SAGPSO)com-bined with SVM is proposed in this paper.Firstly,the idea of simulated annealing is introduced to avoid local extre-mum based on the traditional PSO algorithm,then Gaussian disturbance is performed on the better individuals.Further-more,the SVM parameters are optimized by the algorithm with the advantage of global convergence,fast convergence and high accuracy.Finally,the obtained model parameters are used for prediction,thereby improving the accuracy of the prediction.And compare the prediction results of this model with the prediction results of PSO-SVM and SAP-SO-SVM prediction models.The results show that SAGPSO-SVM is a predictive model with high prediction accuracy and more accurate description of the trend of network security situation changes.
作者 刘俊男 陈占芳 姜晓明 朱利莞 LIU Jun-nan;CHEN Zhan-fang;JIANG Xiao-ming;ZHU Li-guan(School of Computer Science and Technology,Changchun University of Science of Technology,Changchun 130022)
出处 《长春理工大学学报(自然科学版)》 2019年第6期126-128,共3页 Journal of Changchun University of Science and Technology(Natural Science Edition)
基金 吉林省科技计划项目(20190201267JC)
关键词 安全态势预测 粒子群算法 支持向量机 参数优化 高斯扰动 Security situation prediction PSO SVM parameter optimization Gaussian disturbance
  • 相关文献

参考文献5

二级参考文献34

  • 1赫然,王永吉,王青,周津慧,胡陈勇.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044. 被引量:134
  • 2赵世安,黄敢基.模拟退火并行粒子群优化算法程序设计与研究[J].百色学院学报,2006,19(6):9-12. 被引量:8
  • 3王雪梅,王义和.模拟退火算法与遗传算法的结合[J].计算机学报,1997,20(4):381-384. 被引量:123
  • 4康立山,谢云,尤矢勇.非数值并行算法--模拟退火算法[M]. 北京:科学出版社,1997.
  • 5YANG Xin-she. A new met heuristic bat-inspired algorithm [ C ]// Nature Inspired Cooperative Strategies for Optimization. 2010 : 65-74.
  • 6YANG Xin-she. Bat algorithm for muhiobjective optimization [ J ]. International Journal Bio-lnspired Computation, 2011, 3 ( 5 ) : 267- 274.
  • 7李枝勇,马良,张惠珍.遗传变异蝙蝠算法在0-1背包问题上的应用[J/OL].[2012-10-11].http://www.cnki.net/kcms/detail/11.2127.TP.20121011.1019.027.html.
  • 8LEMMA T A, BIN M H F. Use of fuzzy systems and bat algorithm forenergy modeling in a gas turbine generator [ C ]//Proc of IEEE Collo- quium on Humanities, Science and Engineering. 2011 : 305- 310.
  • 9YANG Xin-she, GANDOMI A H. Bat algorithm: a novel approach for global engineering optimization [ J]. Engineering Computations, 2012,99(5) : 464-483.
  • 10MISHRA S, SHAWK, MISHRA D. A new metaheuristic classifica- tion approach for microarray data[ J]. Procedia Technology,2012, 4(1) : 802-806.

共引文献92

同被引文献51

引证文献6

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部