期刊文献+

基于冗余字典的扰动OMP算法研究 被引量:1

A Perturbation Analysis with Redundant Dictionary via Orthogonal Matching Pursuit
下载PDF
导出
摘要 在测量矩阵受扰动和加性噪声情形下,利用离散余弦变换(discrete cosine transform,DCT)和小波变换(wavelet transform,WT)两种不同的冗余字典,对冗余字典的扰动正交匹配追踪(orthogonal matching pursuit,OMP)算法的鲁棒性和稳定性进行了讨论.在不同扰动水平、不同采样数以及不同部分扰动下,通过数值仿真实验验证了信号能够被鲁棒重构. In view of two different redundant dictionaries,the discrete cosine transform(DCT)and wavelet transform(WT),conducted a series of simulation experiments to testify the strong robustness and stability of perturbation orthogonal matching pursuit(OMP)algorithm with various perturbation and additive noise.In condition of different perturbation,sampling numbers and partial perturbation,the experimental results show that signal can be still reconstructed robustly.
作者 刘春燕 李川 邱伟 LIU Chunyan;LI Chuan;QIU Wei(School of Mathematics and Computer,Chongqing Normal University Foreign Trade and Business College,Chongqing 401520,China;School of Big Data and Intelligence Engineering,Chongqing Normal University Foreign Trade and Business College,Chongqing 401520,China;School of Resources and Safty Engineering,Chongqing Vocational Institute of Engineering,Chongqing 402260,China)
出处 《河南教育学院学报(自然科学版)》 2019年第4期12-16,39,共6页 Journal of Henan Institute of Education(Natural Science Edition)
基金 重庆师范大学涉外商贸学院校级重点科研项目(KY2017002) 重庆市教委科学技术研究项目(KJQN201802002) 西南科技大学龙山学术人才研究支持项目(17LZXY13)
关键词 压缩感知 冗余字典 扰动OMP 完全扰动 信号重构 compressed sensing redundant dictionary perturbation orthogonal matching pursuit algorithm perturbation signal reconstruction
  • 相关文献

参考文献2

二级参考文献22

  • 1张海,王尧,常象宇,徐宗本.L_(1/2)正则化[J].中国科学:信息科学,2010,40(3):412-422. 被引量:15
  • 2NYQUIST H. Certain Topics in Telegraph Transmission Theory [J]. American Institute of Electrical Engineers, 1928,47(2): 617-644.
  • 3CANDES E, ROMBERG J,TAO T. Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incom-plete Frequency Information [J]. IEEE Transactions on Information Theory, 2006,52(2) : 489 - 509.
  • 4DONOHO D. Compressed Sensing [J]. IEEE Transactions on Information Theory, 2006,52(4) : 1289 -1306.
  • 5BARANIUK R G. Single-Pixel Imaging via Compressive Sampling [J], IEEE Siganl Processing Magazine, 2008,25(2):83 - 91.
  • 6LUSTIG M, DONOHO D,PAULY J M. Sparse MRI: The Application of Compressed Sensing for Rapid MR Imaging[J]. Magnetic Resonance in Medicine, 2007,58(6) : 1182 - 1195.
  • 7WRIGHT J,YANG A Y,GANESH A,et al. Robust Face Recognition via Sparse Representation [J]. IEEE Transac-tions on Pattern Analysis and Machine Intelligence,2009,31(2) : 210 - 227.
  • 8MAJUMDAR A,WARD R. Compressed Sensing of Color Images [J]. Signal Processing, 2010,90(12) : 3122 - 3127.
  • 9CHEN S,DONOHO D L,SAUNDERS M A. Atomic Decomposition by Basis Pursuit [J]. SIAM J Sci Comp, 1999,20(1): 33 - 61.
  • 10BRUCKSTEIN A M,DONOHO D L,ELAD M. From Sparse Solutions of Systems of Eqnarrays to Sparse Modeling ofSignals and Images [J], SIAM Rev, 2009,51: 34 - 81.

共引文献2

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部