期刊文献+

基于Web数据挖掘的个性化网络教学平台的研究 被引量:4

Research on personalized network teaching platform based on Web data mining
下载PDF
导出
摘要 针对传统的网络教学平台选课过程中缺乏个性化推荐的缺点,提出一种基于Mini Batch K-Means算法的课程推荐聚类分析方法,该方法通过对网络教学平台中的课程及学生分别进行聚类分析来实现个性化研究。与标准的KMeans算法相比,Mini Batch K-Means算法选取小批量的数据子集,从而加快了计算速度,减少了k均值的收敛时间。文章通过一个实例说明了该方法在面对海量的网络数据时,能够更高效地实现选课过程中的课程个性化推荐。 Aiming at the shortcomings of traditional network teaching platform that lacks personalized recommendation,this paper proposes a clustering analysis method based on Mini Batch K-Means algorithm.The method realizes individualized research by clustering the courses and students in the network teaching platform.Compared with the standard K-Means algorithm,Mini Batch K-Means algorithm selects small subsets of data,which speeds up the calculation and reduce the convergence time of K-Means.This paper illustrates an example that can effectively implement the personalized recommendation of the courses during the course selection process in the face of massive network data.
作者 韩鲁峰 Han Lufeng(Nanjing University of Finance and Economics,Nanjing 210023,China)
机构地区 南京财经大学
出处 《计算机时代》 2020年第1期84-86,90,共4页 Computer Era
基金 南京财经大学教学改革立项课题,项目号:HLFXW19001
关键词 数据挖掘 K-MEANS 个性化 教学平台 data mining K-Means personalize teaching platform
  • 相关文献

参考文献4

二级参考文献14

  • 1倪巍伟,孙志挥,陆介平.k-LDCHD——高维空间k邻域局部密度聚类算法[J].计算机研究与发展,2005,42(5):784-791. 被引量:18
  • 2Dubes R C, Jain A K. Algorithms for Clustering Data. Englewood Cliffs, NJ: Prentice Hall, 1988.
  • 3Zhang Tian, Ramakrishnan Raghu, Livny Miron. Birch: An efficient data clustering method for very large databases// Proceedings of the ACM SIGMOD Conference on Management of Data. Montreal, Canada, 1996: 103-114.
  • 4Guha S, Rastogi R, Shim K. ROCK:A robust clustering algorithm for categorical attributes//Proceedings of the 15th International Conference on Data Engineering. Sydney, Australia, 1999:1-11.
  • 5Gupta G K, Ghosh J. Value balanced agglomerative connectivity clustering//Proceedings of the SPIE Conference on Data Mining and Knowledge Discovery Ⅲ. Orlando, USA, 2001:6-15.
  • 6Dutta M, Kakoti Mahanta A, Pujari Arun K. QROCK: A quick version of the ROCK algorithm for clustering of categorical data. Pattern Recognition Letters, 2005, 26(15): 2364-2373.
  • 7Gehrke J. New research directions in KDD. Report on the SIGKDD 2001 Conference Panel, SIGKDD Explorations,2002, 3(2): 76-77.
  • 8Steinbach M, Karypis G, Kumar V. A comparison of document clustering techniques. Minnesota: University of Minnesota, Technical Report: 00-034, 2002.
  • 9Sebastiani F. A tutorial on automatic text categorization// Proceedings of the 1st Argentinean Symposium on Artificial Intelligence (ASAI'99). Buenos Aires, AR, 1999:7-35.
  • 10Larsen B, Aone C. Fast and effective text mining using linear-time document clustering//Proceedings of the 5th ACM SIGKDD. San Diego, CA, 1999:16-22.

共引文献36

同被引文献38

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部