期刊文献+

舰船进气格栅隐身性分析及灵敏度计算 被引量:2

Stealth analysis and sensitivity calculation of ship air-intake grille
下载PDF
导出
摘要 [目的]舰船进气格栅的几何参数众多,对所有几何参数开展雷达波隐身性优化的计算成本过大,为此,需掌握格栅雷达散射截面(RCS)灵敏度较大的几何参数序列。[方法]以某典型舰船进气格栅为研究对象,开展进气格栅参数化建模、电磁散射计算参数设定和计算方法研究,利用中心有限差分方法计算各几何参数对屏蔽效率的灵敏度。[结果]获取了各几何参数下的雷达波散射特性变化规律和进气格栅隐身优化的几何参数序列,验证了构建的舰船进气格栅隐身性分析及灵敏度计算方法的合理性和可行性。[结论]分析计算结果可应用于舰船进气格栅的雷达波隐身优化设计中。 [Objectives]Since the geometric parameters of the ship air-intake grilles are numerous,the calculation cost of radar wave stealth performance optimizing for all parameters is too high,and the geometric parameter sequences with high Radar Cross Section(R CS)sensitivity need to be mastered.[Methods]In this paper,taking one typical air-intake grille of ship as the object,the parameterized modeling,the electromagnetic scattering calculation parameters and the electromagnetic scattering calculation method of the grille had been carried out.The sensitivity of each geometric parameter to shielding efficiency was calculated by using the central finite difference method.[Results]The variation law of radar scattering characteristics under different geometric parameters,a nd the geometric parameter sequence for stealth optimization of the air-intake grilles were obtained.[Conclusions]The stealth analysis and sensitivity calculation method constructed in this paper is reasonable and feasible,a nd can be widely used in the stealth optimization design of naval air-intake grille.
作者 杜晓佳 丁凡 Du Xiaojia;Ding Fan(China Ship Design and Development Center,Wuhan 430064,China)
出处 《中国舰船研究》 CSCD 北大核心 2019年第6期81-87,共7页 Chinese Journal of Ship Research
关键词 进气格栅 雷达波隐身 灵敏度 耦合散射 air-intake grille radar stealth sensitivity coupling scattering
  • 相关文献

参考文献3

二级参考文献72

  • 1陈建华,李龙飞,周立新,孙宏明.液氧/煤油补燃火箭发动机整流栅应用研究[J].火箭推进,2007,33(2):1-6. 被引量:10
  • 2Andersh D, Moore J, Kosanovich S, Kapp D, Bhalla R, Kipp R, Courtney T, Nolan A, German F, Cook J, Hughes J (2000). Xpatch 4: The next generation in high frequency electromagnetic modeling and simulation software. IEEE International Radar Conference, Virginia, USA, 844-849.
  • 3Bhalla R. Ling H (1995). 3D Scattering Center Extraction from XPATCH. Antennas and Propagation Society International Symposium, AP-S Digest, Albuquerque, USA, 4, 1906-1909.
  • 4Blume S, Kahl G (1987). The physical optics radar cross section of an elliptic cone. IEEE Transactions on Antennas and Propagation, 35(4), 457- 460.
  • 5Borden B (2001). Mathematical Problems in Radar Inverse Scattering. Institute of Physics Publishing, lOP Science, R1-R28.
  • 6Borzi G (2004). Trigonometric approximations for the computation of Radar cross sections. IEEE Transactions on Antennas and Propagation, 52(6), 1596-1602.
  • 7Broek BVD, Bicker T, Ewijk LV (2005). Comparison of Modelled to Measured High-Resolution ISAR Data. Netherlands Organization for Applied Scientific Research, Netherlands, TNO Report No. RTO-MP-SET-096.
  • 8Castelloe MW, Munson DC Jr. (1997). 3-D SAR imaging via high-resolution spectral estimation methods: experiments with XPATCH. International Conference on Image Processing, Washington DC, USA, 1,853-856.
  • 9Champagne NJ II, Williams JT, Sharpe RM, Hwu SU, Wilton DR (1992). Numerical modeling of impedance loaded multi-ann Archimedean spiral antennas. IEEE Transactions on Antennas and Propagation, 40(1), 102-108.
  • 10Chen CL (1968). Modification of the back-scattering cross-section of a long metal wire by impedance loading. Antennas and Propagation Society International Symposium, AP-S Digest, 6, Boston, USA, 184- 191.

共引文献12

同被引文献15

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部